New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  pweqi GIF version

Theorem pweqi 3726
 Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.)
Hypothesis
Ref Expression
pweqi.1 A = B
Assertion
Ref Expression
pweqi A = B

Proof of Theorem pweqi
StepHypRef Expression
1 pweqi.1 . 2 A = B
2 pweq 3725 . 2 (A = BA = B)
31, 2ax-mp 8 1 A = B
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642  ℘cpw 3722 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-pw 3724 This theorem is referenced by:  ncpw1c  6154
 Copyright terms: Public domain W3C validator