New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.23v GIF version

Theorem r19.23v 2730
 Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.23v (x A (φψ) ↔ (x A φψ))
Distinct variable group:   ψ,x
Allowed substitution hints:   φ(x)   A(x)

Proof of Theorem r19.23v
StepHypRef Expression
1 nfv 1619 . 2 xψ
21r19.23 2729 1 (x A (φψ) ↔ (x A φψ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176  ∀wral 2614  ∃wrex 2615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2619  df-rex 2620 This theorem is referenced by:  uniiunlem  3353  dfiin2g  4000  iunss  4007  nnadjoinpw  4521  funimass4  5368  dfnnc3  5885
 Copyright terms: Public domain W3C validator