New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  r2al GIF version

Theorem r2al 2651
 Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
Assertion
Ref Expression
r2al (x A y B φxy((x A y B) → φ))
Distinct variable groups:   x,y   y,A
Allowed substitution hints:   φ(x,y)   A(x)   B(x,y)

Proof of Theorem r2al
StepHypRef Expression
1 nfcv 2489 . 2 yA
21r2alf 2649 1 (x A y B φxy((x A y B) → φ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358  ∀wal 1540   ∈ wcel 1710  ∀wral 2614 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619 This theorem is referenced by:  r3al  2671  raliunxp  4823  fununi  5160  dff13  5471
 Copyright terms: Public domain W3C validator