 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq12d GIF version

Theorem reseq12d 4935
 Description: Equality deduction for restrictions. (Contributed by set.mm contributors, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqd.1 (φA = B)
reseqd.2 (φC = D)
Assertion
Ref Expression
reseq12d (φ → (A C) = (B D))

Proof of Theorem reseq12d
StepHypRef Expression
1 reseqd.1 . . 3 (φA = B)
21reseq1d 4933 . 2 (φ → (A C) = (B C))
3 reseqd.2 . . 3 (φC = D)
43reseq2d 4934 . 2 (φ → (B C) = (B D))
52, 4eqtrd 2385 1 (φ → (A C) = (B D))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642   ↾ cres 4774 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-opab 4623  df-xp 4784  df-res 4788 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator