 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reseq2d GIF version

Theorem reseq2d 4934
 Description: Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqd.1 (φA = B)
Assertion
Ref Expression
reseq2d (φ → (C A) = (C B))

Proof of Theorem reseq2d
StepHypRef Expression
1 reseqd.1 . 2 (φA = B)
2 reseq2 4929 . 2 (A = B → (C A) = (C B))
31, 2syl 15 1 (φ → (C A) = (C B))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1642   ↾ cres 4774 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-opab 4623  df-xp 4784  df-res 4788 This theorem is referenced by:  reseq12d  4935  resabs1  4992  resima2  5007  f1orescnv  5301  f1ococnv2  5309  fnressn  5438  oprssov  5603
 Copyright terms: Public domain W3C validator