New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexn0 GIF version

Theorem rexn0 3652
 Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
Assertion
Ref Expression
rexn0 (x A φA)
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem rexn0
StepHypRef Expression
1 ne0i 3556 . . 3 (x AA)
21a1d 22 . 2 (x A → (φA))
32rexlimiv 2732 1 (x A φA)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1710   ≠ wne 2516  ∃wrex 2615  ∅c0 3550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-nul 3551 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator