New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspc2va GIF version

Theorem rspc2va 2962
 Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
Hypotheses
Ref Expression
rspc2v.1 (x = A → (φχ))
rspc2v.2 (y = B → (χψ))
Assertion
Ref Expression
rspc2va (((A C B D) x C y D φ) → ψ)
Distinct variable groups:   x,y,A   y,B   x,C   x,D,y   χ,x   ψ,y
Allowed substitution hints:   φ(x,y)   ψ(x)   χ(y)   B(x)   C(y)

Proof of Theorem rspc2va
StepHypRef Expression
1 rspc2v.1 . . 3 (x = A → (φχ))
2 rspc2v.2 . . 3 (y = B → (χψ))
31, 2rspc2v 2961 . 2 ((A C B D) → (x C y D φψ))
43imp 418 1 (((A C B D) x C y D φ) → ψ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358   = wceq 1642   ∈ wcel 1710  ∀wral 2614 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-v 2861 This theorem is referenced by:  isocnv  5491
 Copyright terms: Public domain W3C validator