New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  spesbcd GIF version

Theorem spesbcd 3128
 Description: form of spsbc 3058. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
spesbcd.1 (φ → [̣A / xψ)
Assertion
Ref Expression
spesbcd (φxψ)

Proof of Theorem spesbcd
StepHypRef Expression
1 spesbcd.1 . 2 (φ → [̣A / xψ)
2 spesbc 3127 . 2 ([̣A / xψxψ)
31, 2syl 15 1 (φxψ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∃wex 1541  [̣wsbc 3046 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator