New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  sscond GIF version

Theorem sscond 3403
 Description: If A is contained in B, then (C ∖ B) is contained in (C ∖ A). Deduction form of sscon 3400. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1 (φA B)
Assertion
Ref Expression
sscond (φ → (C B) (C A))

Proof of Theorem sscond
StepHypRef Expression
1 ssdifd.1 . 2 (φA B)
2 sscon 3400 . 2 (A B → (C B) (C A))
31, 2syl 15 1 (φ → (C B) (C A))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∖ cdif 3206   ⊆ wss 3257 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-ss 3259 This theorem is referenced by:  ssdif2d  3405
 Copyright terms: Public domain W3C validator