New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssrin GIF version

Theorem ssrin 3480
 Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssrin (A B → (AC) (BC))

Proof of Theorem ssrin
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 ssel 3267 . . . 4 (A B → (x Ax B))
21anim1d 547 . . 3 (A B → ((x A x C) → (x B x C)))
3 elin 3219 . . 3 (x (AC) ↔ (x A x C))
4 elin 3219 . . 3 (x (BC) ↔ (x B x C))
52, 3, 43imtr4g 261 . 2 (A B → (x (AC) → x (BC)))
65ssrdv 3278 1 (A B → (AC) (BC))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   ∈ wcel 1710   ∩ cin 3208   ⊆ wss 3257 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by:  sslin  3481  ss2in  3482  ssdisj  3600  ssdifin0  3631  pw1ss  4169  ssres  4990
 Copyright terms: Public domain W3C validator