New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  tceq GIF version

Theorem tceq 6158
 Description: Equality theorem for cardinal T operator. (Contributed by SF, 2-Mar-2015.)
Assertion
Ref Expression
tceq (A = BTc A = Tc B)

Proof of Theorem tceq
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2808 . . . 4 (A = B → (y A x = Nc 1yy B x = Nc 1y))
21anbi2d 684 . . 3 (A = B → ((x NC y A x = Nc 1y) ↔ (x NC y B x = Nc 1y)))
32iotabidv 4360 . 2 (A = B → (℩x(x NC y A x = Nc 1y)) = (℩x(x NC y B x = Nc 1y)))
4 df-tc 6103 . 2 Tc A = (℩x(x NC y A x = Nc 1y))
5 df-tc 6103 . 2 Tc B = (℩x(x NC y B x = Nc 1y))
63, 4, 53eqtr4g 2410 1 (A = BTc A = Tc B)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   = wceq 1642   ∈ wcel 1710  ∃wrex 2615  ℘1cpw1 4135  ℩cio 4337   NC cncs 6088   Nc cnc 6091   Tc ctc 6093 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620  df-uni 3892  df-iota 4339  df-tc 6103 This theorem is referenced by:  tcdi  6164  tc2c  6166  tc11  6228  taddc  6229  tlecg  6230  letc  6231  ce0t  6232  ce2le  6233  cet  6234  tce2  6236  te0c  6237  ce0lenc1  6239  tlenc1c  6240  brtcfn  6246  nmembers1lem1  6268  nmembers1  6271  nchoicelem1  6289  nchoicelem2  6290  nchoicelem12  6300  nchoicelem16  6304  nchoicelem17  6305  nchoicelem19  6307  nchoice  6308
 Copyright terms: Public domain W3C validator