New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  un4 GIF version

Theorem un4 3423
 Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un4 ((AB) ∪ (CD)) = ((AC) ∪ (BD))

Proof of Theorem un4
StepHypRef Expression
1 un12 3421 . . 3 (B ∪ (CD)) = (C ∪ (BD))
21uneq2i 3415 . 2 (A ∪ (B ∪ (CD))) = (A ∪ (C ∪ (BD)))
3 unass 3420 . 2 ((AB) ∪ (CD)) = (A ∪ (B ∪ (CD)))
4 unass 3420 . 2 ((AC) ∪ (BD)) = (A ∪ (C ∪ (BD)))
52, 3, 43eqtr4i 2383 1 ((AB) ∪ (CD)) = ((AC) ∪ (BD))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ∪ cun 3207 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214 This theorem is referenced by:  unundi  3424  unundir  3425  xpun  4834
 Copyright terms: Public domain W3C validator