New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  uncompl GIF version

Theorem uncompl 4074
 Description: Union with complement. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
uncompl (A ∪ ∼ A) = V

Proof of Theorem uncompl
StepHypRef Expression
1 df-un 3214 . 2 (A ∪ ∼ A) = ( ∼ A ⩃ ∼ ∼ A)
2 nincompl 4072 . 2 ( ∼ A ⩃ ∼ ∼ A) = V
31, 2eqtri 2373 1 (A ∪ ∼ A) = V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642  Vcvv 2859   ⩃ cnin 3204   ∼ ccompl 3205   ∪ cun 3207 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214 This theorem is referenced by:  ssofss  4076  vvex  4109  vfintle  4546  vfin1cltv  4547  fnfullfun  5858
 Copyright terms: Public domain W3C validator