
Definitions in Metamath

Mario Carneiro

Carnegie Mellon University, Pittsburgh PA, USA

Abstract. Definitions are great.

Keywords: Metamath · Model theory · formal proof · consistency · ZFC
· Mathematical logic

1 Introduction

Metamath is a proof language, developed in 1992, on the principle of minimizing
the foundational logic to as little as possible [2]. From the beginning, definitions
have been treated as the same thing as axioms, which yields an extremely simple
structure for verifiers. However, this standpoint is undesirable when we want to
assert that a certain small set of axioms leads to a given theorem, because each
new definition requires one or more axioms along with it, which leak through to
the final theorem, even though these axioms are in principle eliminable.

This paper builds on [1], which defines the model theory of Metamath (we
borrow notation and definitions directly from that paper, so readers are en-
couraged to consult it). In this work, we develop a framework for discussing
conservative extensions of a formal system.

Modifications from [1] In [1], the sets TC and VT (typecodes and variable
typecodes) were inferred from the axioms and variable definitions, respectively.
In this paper, we will assume instead that these sets are given separately as part
of the definition of a formal system 〈CN,VR,Type,VT,TC, Γ 〉, subject to the
restrictions VT ⊆ TC ⊆ CN, Type : VR → VT, and EXC = {e ∈ EX | (|e| >
0 ∧ e0 ∈ TC)}. This does not change any of the results of [1].

We will also assume that η is surjective on U, that is, for each c ∈ TC, v ∈ Uc
there is some µ ∈ VL and e ∈ EXC such that ηµ(e) is defined and equals v. For
c ∈ VT this is trivially true, and in grammatical formal systems it is also true,
but in general it must be added as an extra requirement.

Extra notation from [1] We will use some extra notation for the definitions
in [1].

– Formal systems are usually denoted by T = 〈CN,VR,Type,VT,TC, Γ 〉; in
each case we will assume that all the definitions associated to T such as
DV,EXC etc. are available.

2 Mario Carneiro

– When multiple theories are in use these will be disambiguated by primes or
sub/superscripts as in TC′ or TCT .

– Similarly, models are denoted by M = 〈U,#, η〉 with associated definitions
such as VL.

– The notation M |= T means that M is a model for T .
– The statement “ηµ(e) is defined”, which means that e is true in the model

relative to the valuation µ, is written M |=µ e.
– The notation M |= e means that M |=µ e for all µ ∈ VL.
– The notation M |= 〈D,H,A〉 means that for every µ ∈ VL, if µ(α) # µ(β)

for all {α, β} ∈ D and M |=µ H, then M |=µ A. (The previous definition is
a special case of this, M |= e iff M |= 〈∅, ∅, e〉.)

2 The category of models of a formal system

We begin with a definition of model homomorphism:

Definition 1. Given two models M,M ′ |= T for the same formal system, we
say that f : M → M ′ is a model homomorphism if f is a family of functions
fc : Uc → U′c for c ∈ TC such that:

– For v ∈ Uc, w ∈ Uc′ , if v # w, then fc(v) #′ fc′(w).
– For each µ ∈ VL and e ∈ EXC , if ηµ(e) is defined then η′f(µ)(e) = fType(e)(ηµ(e)),

where f(µ) ∈ VL′ is defined by f(µ)(v) = fType(v)(µ(v)) for each v ∈ VR.

We say that f is injective (surjective) if each fc is injective (surjective).

From this, we immediately get a derived notion of the category Mdl(T) of
all models of a formal system T , as well as the category GMdl(T) of models of a
grammatical formal system (which differs only in that models of a grammatical
system must respect the Syn function as well; the morphisms are defined the
same as in the general case). All of the constructions in this section apply with
GMdl(T) in place of Mdl(T).

There is also a preorder on models (which we will treat as a partial order,
implicitly taking equivalence classes):

Definition 2. Given two models M,M ′ |= T for the same formal system, we
say that M ≤ M ′, or “M is stronger than M ′”, if M |= 〈D,H,A〉 implies
M ′ |= 〈D,H,A〉 for all statements 〈D,H,A〉.

The model 1 in which Uc = {∗} for each c, ∗# ∗ is true, and ηµ(e) = ∗ for
all µ, e, is a terminal object in this category, and the top of the poset.

Theorem 1. Mdl(T) has arbitrary products, and furthermore ∀i N ≤ Mi im-
plies N ≤M (one direction of the lattice meet property is valid).

Proof. Let M =
∏
i∈IMi be the model defined by Uc =

∏
i∈I U

i
c, v # w if

∀i ∈ I, vi #i wi, and (ηµ(e))i = ηiµi
(e), where µi is defined by µi(v) = (µ(v))i,

Definitions in Metamath 3

and ηµ(e) is defined only if each component is defined. The construction of 1
above is a special case of this for I = ∅.

Now suppose that Mi |= 〈D,H,A〉 for each i, and let µ ∈ VL, µ(α) # µ(β)
for all {α, β} ∈ D, and M |=µ H. Then µ(α) # µ(β) implies µ(α) #i µ(β) for all
i, and M |=µ H (i.e. ηµ(e) is defined for all e ∈ H) implies that M |=µi

H for
each i. Thus M |=µi A for each i, so M |=µ A. ut

Theorem 2. Given f, g : X → Y , where X,Y ∈ Mdl(T), if Y is compatible
with the equivalence relation (see below), then there is a coequalizer object Q with
morphism q : Y → Q, and furthermore, Q ≤ Y .

Proof. Q and q : Y → Q are defined such that:

– UQc is the quotient of UYc by the smallest equivalence relation ∼c such that
for each e ∈ EXC with Type(e) = c:
• For each µ ∈ VLX , fc(η

X
µ (e)) ∼c gc(ηXµ (e)), and

• For all µ, ν ∈ VLY , if µ(v) ∼Type(v) ν(v) for all v ∈ V(e), then ηYµ (e) ∼c
ηYν (e).

• Y is compatible with the equivalence relation if ηYµ (e) and ηYν (e) in the
previous clause are either both defined or neither defined.

– The morphism q is the canonical map qc : UYc → UYc / ∼c.
– The freshness relation is given by qc(v) #Q qc′(w) if for some v′ ∼c v and
w′ ∼c′ w, we have v′ #Y w′.

– The interpretation function ηQµ (e) is defined by ηQq(µ)(e) = qType(e)(η
Y
µ (e))

(where e ∈ EXC and µ ∈ VLY). The second part of the definition of ∼c
ensures that this is well-defined.

Suppose that Q |= 〈D,H,A〉, and let µ ∈ VLY , µ(α) #Y µ(β) for all {α, β} ∈
D, and Y |=µ H. Then q(µ(α)) #Q q(µ(β)), and Q |=q(µ) H because for each

e ∈ H, ηQq(µ)(e) = qType(e)(η
Y
µ (e)) is defined. Thus Q |=q(µ) A, so ηYµ (A) is

defined, which means Y |=µ A. Thus Q ≤ Y . ut

Theorem 3. Mdl(T) does not necessarily have an initial object.

Proof. Consider the empty formal system, where Γ = ∅. (We can denote this by
T = ∅, in slight abuse of notation, because the other components CN,VR,VT,TC,Type
are all still there.) In this case, there is a model in which ηµ is only defined for
variables, with all composite expressions being undefined (false in the model),
and v#w is always true. Then the only constraint on M is the choice of U subject
to the requirement that Uc 6= ∅ for c ∈ VT, and the constraints on morphisms
are trivialized, so the subcategory of models with these trivial #, η functions is
naturally isomorphic to the category

∏
c∈TC Set of TC-indexed set families and

functions between them.
It is clear by considering this subcategory that there is not necessarily an

initial object, because if VT is nonempty then there is no equivalent of the
empty set; concretely, with T defined such that VT = TC = CN = {A} and
VR = {x}, any model M of T must have some v ∈ UA, so there are at least two
morphisms into M ′ with U′A = {a, b}, mapping f(v) = a and f ′(v) = b. Thus
Mdl(∅) has no initial object. ut

4 Mario Carneiro

This also implies that there are not necessarily equalizers, since the equalizer
of functions f and f ′ would be an initial object (if v is the only member of UA).

Theorem 4. Mdl(T) does not necessarily have coproducts.

Proof. Again, the freshness constraint is the barrier to this property. Consider
the same example as in Theorem 3, but allowing # to be sometimes false. Since
model homomorphisms go from models with a smaller # relation to a larger
one, we need # to be as small as possible given the injection morphisms to the
coproduct. But often the minimal such relation will not actually be a freshness
relation.

For example, take M1 to have base set {a, b} and M2 to be {c, d} (with only
one typecode), and suppose that #1 and #2 are always true. The coproduct M
must contain at least the elements {a, b, c, d}, and we wish to know if e.g. a# c
or not. If these four are the only elements in M , then by the freshness constraint
at least one of the four must be fresh for all of them, so that if a is fresh from
everything we have at most ¬(b # {c, d}) (with all other pairs fresh). But this
choice is not unique, and we could have ¬(a # {c, d}) instead; but then, being
minimal, M would need all of these, ¬({a, b} # {c, d}), a contradiction (since
now no element is fresh for all of them).

Thus there is some other element e# {a, b, c, d}. But since we are assuming
there are no axioms, nothing else constrains the value of e, that is, the canonical
injections are insufficient to determine a morphism from the coproduct. Thus
the coproduct cannot exist. ut

Theorem 5. If T is a grammatical formal system, then GMdl(T) is a full
reflective subcategory of Mdl(T).

Proof. Recall that a model for a grammatical formal system, M ∈ GMdl(T),
is a model in the sense of general formal systems M ∈Mdl(T), subject to the
additional constraints:

– Uc ⊆ USyn(c)

– v # 〈c, w〉 ↔ v # 〈Syn(c), w〉
– ηµ(e) = ηµ(Syn(e)) if ηµ(Syn(e)) ∈ Uc, else undefined.

Since the set of homomorphisms is unchanged in GMdl(T), this is a full
subcategory. To show it is reflective, suppose M ∈ Mdl(T); we will construct
G ∈ GMdl(T) and a : M → G such that any other a′ : M → G′ factors uniquely
through a.

Each f ∈ UGc will be a partial function on Syn−1{c}, defined at c, such that
either f(d) is undefined or f(d) ∈ Ud. Specifically, for c ∈ VT, UGc is the set,
over each µ ∈ VL and e ∈ EXC such that Type(e) = c and ηµ(e) is defined, of
the partial function f defined by f(d) = ηµ([d/e0]e) for d ∈ Syn−1{c}, where
[d/e0]e ∈ EXC denotes the expression formed by setting the typecode e0 of e to
d.

For d ∈ TC \ VT, we define UGd as the subset of f ∈ UGc (where c = Syn(d))
such that f(d) is defined.

Definitions in Metamath 5

Define f #G g if f(c) # g(d) for some c, d in the domains of f, g resp. For
e ∈ EXC , µ ∈ VLG with Type(e) = c ∈ VT, let ηGµ (e) be the partial function

ηGµ (e)(d) = ην([d/e0]e), where ν(v) = µ(v)(Type(v)) (which is defined because

Type(v) ∈ VT). The value of #G and ηG on TC is now forced by the definition,
so this defines the model G ∈ GMdl(T).

The homomorphism a is defined such that ut finish the prooffinish the proof

Theorem 6. A subset of a model is a model iff the restricted # relation is still
a freshness relation, and the restricted η function satisfies the type correctness
law. In particular, the image of a model under a homomorphism is a model.

Proof. Since all laws other than axiom application and type correctness are
equational, they are still satisfied by a restricted η function. Axiom application
is still true because it deals with only one ηµ, for µ in the restricted VL.

The image f(X) of a model homomorphism satisfies the freshness condition
because any finite set W is the f -image of some set W ′, and taking v # W ′,

we have f(v) # W . For type correctness, if ηµ(e) is defined, then η
f(X)
f(µ) (e) =

fType(e)(η
X
µ (e)) ∈ U

f(X)
Type(e). ut

Theorem 7. A monomorphism is an injective morphism, and an epimorphism
is a surjective morphism.

Proof. Suppose we have a monomorphism f : X → Y , and c ∈ TC, x, y ∈ UXc
with fc(x) = fc(y). Let g1, g2 : 1→ X, with g1

c (∗) = x, g2
c (∗) = y, and all other

c′ set to the same value g1
c′(∗) = g2

c′(∗). Then f ◦ g1 = f ◦ g2 =⇒ g1 = g2, and
hence x = y.

To show that an epimorphism f : X → Y is surjective, we can use the
coequalizer construction to build the quotient Y/f(X). That is, we take the
coequalizer of π1 ◦ ι, π2 ◦ ι : f(X)× f(X)→ Y , where π1, π2 are the projections
from the product, and ι : f(X) → Y is the inclusion. This gives a function
q : Y → Y/f(X). For the other function g : Y → Y/f(X), we let g(v) = q(f(x))
for each v ∈ Y , where x is some fixed element of X.

To verify that g is a morphism: Given µ ∈ VL and e ∈ EXC , with ηµ(e)

defined, and c = Type(e), let ν ∈ VLX such that ν(v) = xType(v). Then

η
Y/f(X)
g(µ) (e) = q(ηf(ν)(e)) = q(f(ην(e))), and g(ηµ(e)) = q(f(x)). Since f(ην(e)) ∼
f(x) by definition of the quotient Y/f(X), these two are equal.

Now by the epimorphism property, q ◦f = g ◦f , and hence q = g. Thus given
y ∈ Y , y ∼ f(x). But ∼ is already closed inside f(X) × f(X) because f is a
homomorphism, so y ∈ f(X). ut

For the next result, we will need the category Fresh, whose objects are TC-
indexed sets with a freshness relation (that is, models without the η component),
and homomorphisms, which are just model homomorphisms with the η preser-
vation rule dropped. (Note that Fresh implicitly depends on VT and TC – but
not Γ or the other components.)

6 Mario Carneiro

Theorem 8. Mdl(T) has free objects, in the sense that the forgetful functor
U : Mdl(T)→ Fresh has a left adjoint.

Proof. Given X = 〈UX ,#X〉, let Wc = {p ∈ (CN t
⊔
UX)<ω | p0 = c}, the set

of expressions with variables replaced by elements of UX . We will define first #
and η on Wc, then pare it down to the actual set Uc ⊆Wc.

– Let V(e) for e ∈Wc denote the elements of
⊔

UX in e.
– For e ∈Wc, e

′ ∈Wc′ , let e# e′ if for all v ∈ V(e), w ∈ V(e′), v #X w.
– For e ∈ EXC , µ ∈ VLW (where VLW is the set of valuations where each

variable v takes a value from WType(v)), define ηµ(e) to be the substitution
of each variable in e with the string µ(v); the result will be a member of
WType(e).

Now, we define each Uc ⊆Wc, for c ∈ TC, simultaneously as the minimal set
family subject to the constraints:

– For each v ∈ UXc , 〈c, v〉 ∈ Uc.
– For each µ ∈ VL (with VL defined in terms of U) and 〈D,H,A〉 ∈ Γ , if
• µ(α) # µ(β) for all {α, β} ∈ D, and
• ηµ(h) ∈ UType(h) for all h ∈ H,

then ηµ(A) ∈ UType(A).

With # and η restricted to U, this gives the desired free model on X. The
canonical injection sets v 7→ 〈c, v〉 for each c ∈ TC, v ∈ UXc . ut

Remark 1. Note that for any family Sc ⊆Wc, we can add Sc ⊆ Uc to the closure
conditions for U to get a different model F (X,S), which is no longer free but is
instead thought of as “the free model on X generated by S”. Roughly speaking,
this model satisfies F (X,S) |=µ s for each s ∈ Sc and is universal among such
models. (“Roughly” here because s is not an expression but is a member of the
model itself, so there are some problems with stating the universal property. But
this is the intuition. In many cases such as Theorem 9, s will be closely related
to an expression, and then this can be made precise.)

The Gödelian construction of a formal system as a model of itself in [1] is a
special case of this construction, where X sets UXc = {v ∈ VR′ | Type(v) = c}
(where VR′ chosen such that UXc is infinite for each c ∈ VT), and v#w iff v 6= w.
But we can improve the result with a different choice of X:

Theorem 9 (Gödel’s completeness theorem 2). Assuming VR has infinitely
many variables of each type, a theorem 〈D,H,A〉 of a formal system is provable if
and only if M |= 〈D,H,A〉 in every model M . (This improves on [1] by allowing
a nonempty H and a non-full D.)

Proof. As in the first proof, the forward direction of both versions of the theorem
is trivial by the definition of a model. Let Uc = {v ∈ VR | Type(v) = c}. For
v, w ∈ VR, let v # w if either {v, w} ∈ D or v 6= w and one of v, w is not in

Definitions in Metamath 7

V(H ∪ {A}). (The set D∗ = {{v, w} | v#w} is the largest DV set whose reduct
is D.) Finally, let Sc be the set of all expressions in H of type c.

Let M = F (〈U,#〉, S) be the model induced by U,#, and generated by the
set S, by Remark 2, and let I ∈ VL map each variable to itself (specifically,
I(v) = VHv), so that ηI(e) = e. Then I(v) #M I(w) for all v, w ∈ D, and for
each h ∈ H, ηI(h) ∈ SType(h), so M |=I H. Thus by the theorem hypothesis,
M |=I A, that is, A ∈ UType(A).

By induction, we claim that for each c ∈ TC and A ∈ Uc, 〈D∗, H,A〉 is a
provable pre-statement, i.e. A ∈ C, the closure of H with respect to D∗. Thus,
the reduct of 〈D∗, H,A〉, which is 〈D,H,A〉 by construction, is a theorem.

– If A = 〈c, v〉 for a variable v of type c, then A = VHv ∈ C.
– If A ∈ Sc, then A ∈ H ⊆ C.
– Otherwise, by the induction hypothesis we are given 〈D′, H ′, A′〉 and µ ∈ VL,

where
• µ(v) ∈ C for each v ∈ VR,
• µ(α) # µ(β) for all {α, β} ∈ D′,
• ηµ(h) ∈ C for all h ∈ H ′,
• and A = ηµ(A′).

Define the substitution σ such that σ(VHv) = µ(v). Then σ(e) = ηµ(e), so
σ(h) ∈ C for each h ∈ H ′ and σ(VHv) = µ(v) ∈ C for each v ∈ VR, and for
each {α, β} ∈ D′, γ ∈ V(σ(〈α〉)) and δ ∈ V(σ(〈β〉)), by definition of # we
have {γ, δ} ∈ D∗, so σ(A′) = A ∈ C.

ut

Remark 2. It is unfortunate that Theorem 9 requires infinitely many variables,
because this is not the case in any actual Metamath database, which is a finite
thing. However, there is an easy compactness result here: One can take an exist-
ing database, extend it with infinitely many variables, then prove the theorem
and throw away all the unused variables to achieve the proof in a finite formal
system. But there is no bound on how many variables will be needed to prove a
given theorem (just as there is no bound on the length of the proof).

2.1 Extensions

All of the above work deals with different models over a fixed formal system. We
can also consider modification of the underlying theory.

Definition 3. A formal system T ′ extends another formal system T , denoted
T ≤ T ′, if:

– CN ⊆ CN′

– VR ⊆ VR′

– VT ⊆ VT′

– TC \ VT ⊆ TC′ \ VT′
– Type ⊆ Type′ (that is, the functions agree on their common domain)
– Γ ⊆ Γ ′

8 Mario Carneiro

If T and T ′ are grammatical formal systems, then we also require Syn ⊆ Syn′.
If all components are equal except Γ ⊆ Γ ′, then this is called an axiomatic
extension, denoted T E T ′.

Theorem 10. If T ≤ T ′, then there is a restriction functor R : Mdl(T ′) →
Mdl(T), which is full, and an embedding if TC = TC′.

Proof. Given M ∈Mdl(T ′), let URMc = UMc for c ∈ TCT , #RM be the restriction
of #M , and ηRMµ (e) = ηMµ (e) for each e ∈ EXTC and µ ∈ VLRM . On morphisms,
it just restricts (f(c))c∈TC′ to (f(c))c∈TC.

The fact that this is full is a simple consequence of the fact that it is a
restriction on the set families, and it is an embedding when TC = TC′ because
in this case the functor does nothing to objects or morphisms (it is the inclusion
map from a subcategory at this point). ut

An important question that will come up later is the “extension problem”:
given M ∈ Mdl(T), what can we say about those M ′ ∈ Mdl(T ′) such that
RM ′ = M? Note that by combining the forgetful functor U : Mdl(T)→ Fresh
with F : Fresh→Mdl(T ′), we can build the model RFUM ∈Mdl(T). This

Theorem 11. If TC = TC′ in the extension T ≤ T ′, then the restriction functor
R : Mdl(T ′)→Mdl(T) has a left adjoint E : Mdl(T)→Mdl(T ′).

Proof. Given M ∈Mdl(T), by combining the forgetful functor U : Mdl(T) →
Fresh with F : Fresh→Mdl(T ′), we get FUM ∈Mdl(T ′). (The assumption
TC = TC′ ensures that Fresh is the same for T and T ′.) However, we have
forgotten too much of the structure of T with the composition. Given any N ∈
Mdl(T ′) and f : M → RN , Given M ∈Mdl(T ′), let URMc = UMc for c ∈ TCT ,

#R(M) be the restriction of #M , and η
R(M)
µ (e) = ηMµ (e) for each e ∈ EXTC and

µ ∈ VLR(M). utfinish the prooffinish the proof

2.2 Conservative and definitional extensions

Now we have the structure we need to start homing in on conservative extensions,
from which we can extract a definition for definitions. In conventional logic, a
theory T ′ is a conservative extension of a theory T if the language of T ′ extends
the language of T , and every theorem of T is a theorem of T ′ (i.e. T ′ is an
extension of T), and every theorem of T ′ in the language of T is a theorem of T .

In Metamath, the hard part of the above definition is the notion of “lan-
guage”. A priori there is no notion of language beyond what is achievable
through the applications of the axioms; but of course this is not suitable be-
cause if we allowed “in the language of T” to simply mean “a theorem of T”,
then the only conservative extensions to a formal system are equivalent formal
systems (with the same theorems), which trivializes the notion.

We may notice, however, that expressions are strings of constants and vari-
ables, and so perhaps we can use the set of constants as our “language”. This
brings us to the first definition:

Definitions in Metamath 9

Definition 4. A conservative extension of a formal system T is a formal system
T ′ ≥ T such that for every theorem 〈D,H,A〉 of T ′, if each e ∈ H ∪ {A} is a
member of EXc (that is, an expression in CN∪VR), then 〈D,H,A〉 is a theorem
of T .

We can recharacterize conservative extensions categorically:

Theorem 12. T ≤ T ′ is a conservative extension iff the restriction functor of
Theorem 10 is surjective on objects.

Proof. In the forward direction, given that T ≤ T ′ is conservative, and given
some M ∈Mdl(T) ut finish the prooffinish the proof

This is as good as we can do in general formal systems. However, it is not
quite as accurate as we would like. For example, if T is a formal system containing
the rule wff(ϕ] (where ϕ is a wff variable), and T ′ has rules wff(ϕ] and wff[ϕ),
then T ′ is a conservative extension of T . However, in the very similar case where
T has wff[: ϕ] and T ′ has wff[: ϕ] and wff[ϕ :], T ′ is not a conservative extension.

The problem is that in the second case, the “language” is the same, because
both expression builders draw from the same set of constants “[”, “:”, “]”. To
resolve this, we must assume that we have a grammatical formal system, in
which case we have a framework of syntax expressions that form the “language”.
This yields the second and preferred definition for a conservative extension in a
grammatical formal system.

Definition 5. A conservative extension of a grammatical formal system T is a
grammatical formal system T ′ ≥ T such that for every theorem 〈D,H,A〉 of T ′,
if for each e ∈ H ∪ {A}, e0 ∈ TC and Syn′(e) is a theorem of T (that is, e has
a valid parse in T), then 〈D,H,A〉 is a theorem of T .

Remark 3. Any unambiguous formal system can be mapped to a tree formal
system and then back to a string formal system, where the strings are now
(reverse) Polish notation with unique constants for each syntax axiom. Thus
we can also go backwards from the more expressive Definition 5 to the original
Definition 4, under a new representation.

For the rest of this work, we shall restrict our attention to unambiguous
formal systems, because there isn’t much more to say about the general case.

3 Definitions

Although conservative extension is the goal, it is not the means. Instead, we
make use of “definitions”, which can be explained as a syntax axiom which is
an abbreviation for an expression in the original language. However, there are
some subtleties with bound variables here, and it is easiest to give our initial
definition in terms of a model.

10 Mario Carneiro

Definition 6. Given a model M = 〈U,#, π〉 for the unambiguous formal system
T (which we will also write M |= T), a conservative model extension of M is a
model M ′ = 〈U,#, π′〉 for an extended unambiguous formal system T ′ ≥ T such
that:

– TC′ = TC
– πa = π′a for each a ∈ SA

The important thing to notice about this definition is that U and # are
unchanged in the extended model, so the only freedom is in choosing πa for new
syntax axioms in SA′ \ SA. However, there are no restrictions on new logical
axioms in T ′, provided that M ′ remains a model of it, which corresponds to the
idea that if the πa “abbreviations” are expanded in these new axioms, one gets
the same value in the model, and hence the same truth value as well. If one
starts with a very strict model like the Gödelian model of a formal system over
itself, this is sufficient to ensure that these axioms are mapped to theorems of
the original system.

Theorem 13. Assume VRT has infinitely many variables of each type. If for
every model M |= T there is some model N ≤ M and a conservative model
extension N ′ |= T ′ of N , then T ′ is a conservative extension of T .

Proof. By definition, T ′ ≥ T . Now suppose 〈D,H,A〉 is a theorem of T ′, and
for each e ∈ H ∪ {A}, Syn′(e) is a theorem of T . By Theorem 9, it suffices
to show M |= 〈D,H,A〉 for every M |= T . Let N ′ |= T ′ be a conservative
model extension of N |= T . N ′ |= 〈D,H,A〉 means that for every µ ∈ VL, if
µ(α) # µ(β) for all {α, β} ∈ D and N ′ |=µ H, then N ′ |=µ A. Thus we must
show N |=µ e ⇐⇒ N ′ |=µ e for e ∈ H∪{A} in order to establish N |= 〈D,H,A〉
and thus M |= 〈D,H,A〉 (since N ≤M).

In these cases, we know Syn′(e) is a theorem of T , and since TC = TC′ and
Syn agrees with Syn′ on their common domain, Syn′ = Syn and thus Syn′(e) =
Syn(e) is in the language of T , because it is a theorem of T .

Since πa = π′a for each syntax axiom a, by induction all syntax proofs e
satisfy ηµ(e) = η′µ(e). But Syn(e) is a syntax proof because it begins with a
syntax typecode, so ηµ(Syn(e)) = η′µ(Syn(e)) and thus N |=µ e ⇐⇒ N ′ |=µ e.

ut

To make this existential more constructive, we would like a function D(M)
which maps each model M |= T to a conservative model extension D(M) |= T ′.
If SA = SA′ then there is nothing to show, but if there is some a ∈ SA′ \ SA
we are tasked with inventing a function πa :

∏
i UType(vai) → UType(a) using the

given arbitrary model M , and there aren’t too many options for such.

As the base case, we have the projection functions: the function f({vi}) = vk
is a valid function

∏
i Uci → Uck . The induction step is the application of a

syntax axiom in T , along with multi-composition: if a ∈ SA and for each i,
gi : X → UType(vai), then f(x) = πa({gi(x)}) is a function X → UType(a).

Definitions in Metamath 11

This rigorously justifies the usage of abbreviational definitions such as (ϕ ∧
ψ) ↔ ¬(ϕ → ¬ψ), but it lacks a mechanism for introducing dummy variables,
which are essential to set theoretical definitions.

We can use the above induction to define a function f :
∏
i≤n Uci → Uc′

which has “too many variables” n > k, and pare it down to the real function
πa :

∏
i≤k Uci → Uc′ (where the syntax axiom a has k variables) by requiring

πa({vi}k1) = f({vi}n1) for all {vi}n1 such that vi # vj whenever i, k < j.
This causes a problem in that the uniqueness of πa here requires the original

function f to take exactly the same value at different dummy arguments, which
in many models is not true (such as the Gödelian model in which the statement
string is the model element). To resolve this, we use the auxiliary model N ,
which will be a quotient with respect to the appropriate equivalence relation.

Definition 7. Given a model M , and x, y ∈
⊔

U, say that x and y are equivalent
and write x ' y if M respects the smallest model equivalence relation ∼ satisfying
x ∼ y. (That is, ∼ is required to be an equivalence relation closed under η
application, so if µ(v) ∼ ν(v) for all v, then ηµ(e) ∼ ην(e); and M must respect
the equivalence, so ηµ(e) is defined iff ην(e) is.)

Theorem 14. Equivalence is itself an equivalence relation, and it is also re-
spected by M .

Proof. Symmetry and reflexivity of ' are immediate. If x ' y ' z, let ∼xy,∼yz,
etc. denote the smallest model equivalence relating the subscripts. We will prove
that ηµ(e) is defined iff ην(e) is whenever µ(v) ∼xyz ν(v). Because ηµ(e) depends
on only a finite number of values of µ, we can assume µ and ν differ at all but
finitely many positions; and then by changing each value from µ(v) to ν(v) we
are reduced to the case of proving ηµ(e) is defined iff ην(e) is whenever µ and ν
differ at only one point v. This latter property we prove by induction on ∼xyz.

In the base case we have µ(v) = x, ν(v) = y, or µ(v) = y, ν(v) = z, which are
handled by the assumptions on ∼xy,∼yz. Equivalence properties are immediate
because the consequent is of the form “P (x) iff P (y)”. For η application, suppose
that a, b are such that for all expressions e and valuations τ , ητ [a](e) is defined iff
ητ [b](e) is, where τ [a] = τ [v → a] is the valuation τ with τ(v) set to a. We want to
show that ηµ(e′) is defined iff ην(e′) is, where µ(v) = ητ [a](e) and ν(v) = ητ [b](e).

Define the substitution σ such that σ(v) = e and σ(v′) = v′ for v′ 6= v.
Since σ(µ[a])(v) = ητ [a](e) = µ(v) and σ(µ[a])(v′) = ητ [a](v

′) = µ(v′), we have
σ(µ[a]) = µ so that ηµ[a](σ(e)) = ησ(µ[a])(e) = ηµ(e), and similarly ηµ[b](σ(e)) =
ην(e) (since µ[b] = ν[b]). By assumption, ηµ[a](σ(e)) is defined iff ηµ[b](σ(e)) is,
so ηµ(e) is defined iff ην(e) is, as we wanted to show.

Then since µ(v) ∼xyz ν(v) implies µ(v) ∼xz ν(v), we have x ' z.
If µ(v) ' ν(v) for each v, and we wish to show ηµ(e) ' ην(e) (with one

side defined iff the other is), as before by transitivity we are reduced to the
case of µ, ν differing only at v. Then µ(v′) ∼µν ν(v′) for all v′, by assumption
for v′ = v and by reflexivity otherwise, so ηµ(e) is defined iff ην(e) is. Then
since ∼ (ηµ(e), ην(e)) is contained in ∼µν we immediately have the definedness
requirement. ut

12 Mario Carneiro

Definition 8. For a fixed formal system T , given an expression e and a variable
x, and a set of variables V , NFV (x, e), read “x is not free in the variables V of
e”, means that for all models M |= T and valuations µ, ν ∈ VL that differ only at
x, if for all v ∈ V other than x, µ(v)#µ(x) and µ(v)#ν(x), then ηµ(e) ' ην(e).
NF(x, e) means NFV(e)(x, e) and is read “x is not free in e”.

We show that all this defines a valid interpretation function in the following
theorem:

Theorem 15. Let T be an unambiguous formal system, and let SA′ ⊇ SA, such
that for each a ∈ SA′ \ SA, P = P (a) is a syntax tree of T , s = s(a) is an
injective map from each vai to a variable s(vai) ∈ VR (which may appear in the
leaves of P), and NF(x, P) for all x ∈ VR \ ran s.

Let T ′ be defined from T with the new SA′. Then T ′ is a conservative exten-
sion of T .

Proof. By Theorem 13, we are given a model M |= T and must create a con-
servative model extension N ′ |= T ′ over some N ≤ M . The reason we need the
extra step of reduction via N is because the definition of πa we will make forces
η to take equal values on the target expression with different dummy variable
assignments.

For our choice of N , we take the quotient of M with respect to ' using
Theorem 2 to get a quotient model N = M/ '≤M .

To build the conservative model extension N ′, we need a definition of πa for
each a ∈ SA′ \ SA. Set V = V(P) ∪ ran s, and define πa({xi}) = ηµ(P), where µ
is any valuation such that µ(s(vai)) = xi, and µ(v) # µ(w) whenever v, w ∈ V ,
v 6= w, and w /∈ ran s.

We first must show that πa is well-defined. We can find a valuation with the
given properties by assigning first µ(s(vai)) = xi (which is consistent because
s is injective), then repeatedly extending with some w fresh from all previous
values until all µ(v) for v ∈ V are assigned, then giving any value to the other
“unused” variables.

To show uniqueness, first we note that if µ and ν differ only outside V , the
dependence on present variables rule for models ensures that ηµ(P) = ην(P).
Thus we can assume they coincide in this range, and by definition they coincide
on ran s (since µ(s(vai)) = ν(s(vai)) = xi). By changing one variable at a time,
by transitivity we are reduced to showing ηµ(P) = ην(P) where µ, ν differ only
at some x ∈ V \ ran s. Given v ∈ V(P) different from x, the πa assumption gives
µ(v) # µ(x) and µ(v) # ν(x), so the NF(x, P) assumption gives ηµ(P) ' ην(P)
in M and ηµ(P) = ην(P) in N .

The only property we must check to ensure that N ′ is a model is freshness
substitution: for all v ∈

⊔
U and xi ∈ UType(vai), v # xi for each i, then v #

πa({xi}). As in the proof of existence, we define µ(s(vai)) = xi, then extend
with w fresh from all previous values, but also fresh from v, until all µ(v) for
v ∈ V are assigned. The resulting πa({xi}) = ηµ(P) will satisfy v # µ(w) for
each w ∈ V , and thus v # ηµ(P) by freshness substitution in T . ut

Definitions in Metamath 13

As it stands, Theorem 15 is not very useful, because it does not introduce
any axioms besides new “uninterpreted” syntax. However, there is a whole class
of possible new axioms that can now be consistently added to T ′:

Theorem 16. The formal system and model N ′ |= T ′ in Theorem 15 remains
a model if T ′ is extended with 〈D′, H ′, A′〉, formed from N ′ |= 〈D,H,A〉 by
replacing, for some substitution σ, an instance of σ(P) one of the subtrees of
H ∪ {A} with the syntax tree a[{σ(s(vai))}], and adding {σ(v), σ(w)} to D′ for
each v, w ∈ V with v 6= w and w /∈ ran s.

Proof. We wish to show that N ′ |= 〈D′, H ′, A′〉, so let µ ∈ VL, and suppose
µ(α) # µ(β) for all {α, β} ∈ D′. Since D′ ⊇ D, we have that N ′ |=µ H implies
N ′ |=µ A, and want to show N ′ |=µ H ′ implies N ′ |=µ A′. In other words,
ηµ(e) = ηµ(e′) where e′ is obtained from e by the tree substitution in the theorem
assumption.

This follows by induction, with the base case being the subtree substitution
itself: ηµ(a[{σ(s(vai))}]) = ηµ(σ(P)). If v, w ∈ V , v 6= w, and w /∈ ran s, then
{σ(v), σ(w)} ∈ D′, so µ(σ(v)) #µ(σ(w)). Thus σ(µ) is admissible for expanding
the definition of πa, so

ηµ(σ(P)) = ησ(µ)(P)

= πa({σ(µ)(s(vai))})
= πa({ηµ(σ(s(vai)))})
= ηµ(a[{σ(s(vai))}]),

as we wanted to show. ut

Now we are in a position to use the results. Theorem 16 produces a new
N ′ |= 〈D′, H ′, A′〉 from N ′ |= 〈D,H,A〉, so it can be iterated as many times as
necessary to replace multiple substituted subtrees of P in a theorem. The base
case is any theorem from T , which is also a theorem of T and hence modeled by
N ′.

As an example, if we are defining ` V = {x | x = x}, the base theory T
satisfies T ` {x | x = x} = {x | x = x}, so T ′ can be consistently extended with
` V = {x | x = x}, which is the result of replacing {x | x = x} (this is P) with
the new constant syntax expression V .

Finally, we would like to make the precondition of Theorem 15 something
easily checkable, using some basic theorems for not-freeness.

Theorem 17. 1. If x /∈ V(e), then NFV (x, e).
2. If NFV (x, ei) for each subtree ei in the tree a[{ei}], then NFV (x, a[{ei}]).
3. If σ is a substitution and NF(x, e) for all x such that y ∈ V(σ(x)), then

NFV (y, σ(e)).

Proof. Fix a model M |= T .

1. If µ, ν are valuations that differ only at x /∈ V(e), then ηµ(e) = ην(e), so
certainly ηµ(e) ' ην(e).

14 Mario Carneiro

2. Let µ, ν be valuations that differ only at x. Now ηµ(a[{ei}]) = πa({ηµ(ei)}),
and for each i, ηµ(ei) ' ην(ei), so by Theorem 14 ηµ(a[{ei}]) ' ην(a[{ei}]).

3. Let µ, ν be valuations that differ only at y, and xxx. We have ηµ(σ(e)) =
ησ(µ)(e), and σ(µ)(x) = ηµ(σ(x)), so σ(µ) differs from σ(ν) only when y ∈
V(σ(x)); then since by assumption NF(x, e) for each of these x, ησ(µ)(e) '
ησ(ν)(e).

ut

These theorems are true under very general circumstances, but a major com-
plicating factor is being able to show the x ' y relation, which involves many
individual elements of the model. To that end, we introduce a reduction to a
single theorem in the object language:

Definition 9. An equality in the formal system T for the type c is an expression
e(x, y) containing two variables x, y of type c, such that for all models M |= T
and valuations µ, M |=µ e(x, y) iff µ(x) ' µ(y).

A classic example of an equality is the expression ` x = y in set theory, or
the relation ` (ϕ ↔ ψ) in predicate logic. That these are actually equalities by
this definition remains to be shown, but first let us derive the essential properties
of an equality. We write x ≈ y instead of e(x, y) for a given equality ≈.

Theorem 18. Let ≈ be an equality in T .

1. The definition of equality generalizes to expressions: for all M,µ and syntax
expressions e, e′, M |=µ e ≈ e′ iff ηµ(e) ' ηµ(e′).

2. ≈ is provably an equivalence relation in T .
3. ≈ is the unique equality of type c.
4. For any expression e and substitutions σ, σ′, if for each v ∈ V(e) with σ(v) 6=

σ′(v) there is some equality ≡ on the type Type(v) such that T ` σ(v) ≡
σ′(v), then T ` σ(e) ≈ σ′(e).

Proof.

1. Applying the definition to the valuation σ(µ), where σ(x) = e and σ(y) =
e′, we get ηµ(e) ' ηµ(e′) iff σ(µ)(x) ' σ(µ)(y), iff M |=σ(µ) x ≈ y, iff
ησ(µ)(x ≈ y) = ηµ(σ(x ≈ y)) = ηµ(σ(x) ≈ σ(y)) = ηµ(e ≈ e′) is defined, iff
M |=µ e ≈ e′.

2. We will show transitivity; reflexivity and symmetry are proven by an anal-
ogous argument. Suppose T ` x ≈ y and T ` y ≈ z, and let M,µ be
given such that M |=µ x ≈ y and M |=µ y ≈ z. The definition of equality
gives µ(x) ' µ(y) and µ(y) ' µ(z), and ' is an equivalence relation, so
µ(x) ' µ(z) and hence M |=µ x ≈ z. Thus T ` x ≈ z by Gödel’s theorem.

3. T ` x ≈ y iff for all M,µ, M |=µ x ≈ y, iff for all M,µ, µ(x) ' µ(y). Since
this latter expression does not depend on ≈, it follows that if ≡ is another
equality for the same type c, then T ` x ≈ y iff T ` x ≡ y, so ≈ and ≡ are
provably equivalent.

Definitions in Metamath 15

4. By Gödel’s theorem we are given M,µ such that M |=µ σ(v) ≈ σ′(v) for
each v ∈ V(e), and want to show M |=µ σ(e) ≈ σ′(e), or equivalently
ησ(µ)(e) ' ησ′(µ)(e).
By the substitution property of ', this follows if for all v, σ(µ)(v) ' σ′(µ)(v),
equivalently ηµ(σ(v)) ' ηµ(σ′(v)), and WLOG we can assume this is satisfied
outside v ∈ V(e). If σ(v) = σ′(v) this is clearly satisfied so we can assume
σ(v) 6= σ′(v).
But then the assumption applies: for each v ∈ V(e) we are given an equality
for the type such that T ` σ(v) ≡ σ′(v), which implies that M |=µ σ(v) ≡
σ′(v), which is equivalent to ηµ(σ(v)) ' ηµ(σ′(v)) or σ(µ)(v) ' σ′(µ)(v).

ut

We now have definitions of equality and bound variables that make sense
in an arbitrary grammatical formal system, even though we did not assume
anything resembling a first order logic system in T . The catch is that there may
not be any expression in the logic that adequately represents an equality. In
order to make use of this architecture, we must have a way to construct actual
equalities in T , so we need the converse of Theorem 19(4).

Theorem 19. Suppose expressions x ≈c y are given for each c ∈ C ⊆ VT, and
the following are theorems:

` x ≈c x (1)

x ≈c y ` y ≈c x (2)

x ≈c y, y ≈c z ` x ≈c z; (3)

and for every provable typecode c ∈ TC \ VT, Syn(c) ∈ C and

x, x ≈Syn(c) y ` y; (4)

and for each syntax axiom a and each i, if the i-th variable of a is of type c′ ∈ C,
a is of some type c ∈ C and

x ≈c′ y ` a[v1, . . . , vi−1, x, vi+1, . . . , vk] ≈c a[v1, . . . , vi−1, y, vi+1, . . . , vk]. (5)

(All variables vi and x, y, z above are variables, not expressions, of the appropri-
ate type.) Then ≈c is an equality for each c ∈ C.

Proof. Let a model M and valuation µ be given. We wish to show M |=µ x ≈ y
iff µ(x) ' µ(y). (⇐) In the reverse direction, µ(x) ' µ(y) implies ηµ(x ≈ y) =
π≈(µ(x), µ(y)) ' π≈(µ(y), µ(y)), so M |=µ x ≈ y iff M |=µ y ≈ y, which is true
by Equation 1.

(⇒) In the forward direction, we have M |=µ x ≈c y, and want to prove
µ(x) ' µ(y). Define an equivalence relation ∼ on the elements of the model such
that v ∼ w if v, w have the same type c, and:

– If c ∈ C, then there is some ν with ν(x) = v and ν(y) = w such that
M |=ν x ≈c y.

16 Mario Carneiro

– If c /∈ C, then µ(v) = µ(w).

(Note that the “for some ν” can be replaced by “for any ν”, because any two
valuations which take the same values at x, y give the same result in the model,
since x ≈c y only depends on x, y.)

Then x ∼ y, and eqs. (1) to (3) imply that ∼ is an equivalence relation. (For
transitivity, given a ∼ b ∼ c, we apply the transitivity theorem for a valuation
such that ν(x) = a, ν(y) = b, ν(z) = c.)

For η-closure, by induction it is sufficient to prove it for the syntax axioms. So
we are given that vi ∼ wi for each i, and we want to show πa({vi}) ∼ πa({wi}).
By transitivity we can reduce to the case when vi = wi except at one point k.
If Type(vk) is not in C, then vk = wk so πa({vi}) = πa({wi}). Otherwise by
vk ∼ wk, we can choose variables {pi, qi}i such that pi = qi if i 6= k, and pk = x,
qk = y; then choose a valuation such that µ(pi) = vi for each i, and µ(y) = wk
(so µ(qi) = wi for each i); and such that M |=µ x ≈c y.

Equation (5) then applies for the valuation µ, to get M |=µ a[{pi}] ≈c′
a[{qi}], where c′ ∈ C is the type of a. Thus µ(a[{pi}]) ∼ µ(a[{qi}]), and
µ(a[{pi}]) = πa({µ(pi)}) = πa({vi}), and similarly for qi, so πa({vi}) ∼ πa({wi}).

Finally, we must show that M respects ∼, so we want (with the same vi, wi
as above) that ηµ〈c, a[{pi}]〉 is defined iff ηµ〈c, a[{qi}]〉 is, where here c ∈ TC is
the explicitly written root typecode (satisfying Syn(c) = Type(a)). Equivalently,
M |=µ 〈c, a[{pi}]〉 iff M |=µ 〈c, a[{qi}]〉. Equation (4), applied in each direction,
proves that this follows from M |=µ, a[{pi}] ≈c′ a[{qi}], which we have already
shown.

Thus, M respects the model equivalence relation ∼, and then by Definition 7,
M |=µ x ≈c y implies µ(x) ' µ(y). ut

Remark 4. It should be noted that this is not the easiest way to prove that ≈c
satisfies the substitution rules – we would be better served by echewing models
altogether and performing induction directly on the recursive definition of well
formed formulas in the language. This approach, however, clearly marks the
relationship between the formal system definition and the definition from within
a model.

3.1 Definitions in set.mm

Remark 5. The principal “consumer” of Theorem 19, and the source of in-
tuition, is the case of set theory, with typecodes {set, class,wff,`}. We take
C = {class,wff}, with ≈class= “ ` A = B′′ and ≈wff= “ ` ϕ ↔ ψ′′. The
closure properties of C are important here: the non-variable typecode ` has
Syn(`) = wff ∈ C, and every syntax axiom produces a value of some type
c ∈ C. (This is trivial for ` because it is a non-variable typecode, but it is im-
portant that set has no syntax axioms, so that only set variables can substitute
for other set variables.)

Incidentally, it is not required to restrict C to just these two; in fact set also
has an equality on it: x ≈set y iff ` ∀x x = y. Note that this is saying not that x

Definitions in Metamath 17

and y have the save value in the logic, but they are the same variable. In standard
FOL x and y are distinct simply because t hey are textually different, so that
y is unbound and the statement states that the universe has only one element
(which is provably false). But in Metamath it is possible for them to be the same
variable, in which case it reads ` ∀x x = x which is true. You can in fact prove
the equality substitution formulas using this: ` ∀x x = y → (∀x ϕ[x]↔ ∀y ϕ[x])
is a peculiar but provable assertion in set.mm.

How does the not-free predicate translate to set.mm? We already have a
candidate for NF(x, ϕ), namely ` (ϕ → ∀x ϕ). Now that we know that = is an
equality in set.mm we may be able to finish the job.

Theorem 20. In the formal system T of set.mm, for every expression ϕ of type
wff, NF(x, ϕ) iff T ` (ϕ → ∀x ϕ) is provable with disjoint variable conditions
{v, x} for each v ∈ V(ϕ) with v 6= x.

Proof. (⇒) In the forward direction, we want to show that M |=µ (ϕ → ∀x ϕ)
for all M,µ given NF(x, ϕ). By the disjoint variable condition, we can assume
µ(v) # µ(x) for each v ∈ V(ϕ), v 6= x. Let ν(v) = µ(v) for all v 6= x, and
ν(x) = w, where w is chosen to be fresh from µ(v) for all v ∈ V(e). The definition
of NF(x, ϕ) says that if ν is any other valuation which differs from µ only at x,
and µ(v) # µ(x), µ(v) # ν(x) for all v ∈ V(e) other than x, then ηµ(ϕ) ' ην(ϕ).

We can expand M |=µ (ϕ → ∀x ϕ) as π→(ηµ(ϕ), π∀(µ(x), ηµ(ϕ)), and then
ηµ(ϕ) ' ην(ϕ) implies that π→(ην(ϕ), π∀(µ(x), ην(ϕ)) is also defined in U`.
Finally, augment ν with ν(y) = µ(x), where y is a variable not in V(ϕ)∪{x}. Then
we can write the goal as M |=ν (ϕ→ ∀y ϕ). (In other words, we just rewrote a
statement like (∃x, x ∈ z → ∀x ∃x, x ∈ z) to (∃y, y ∈ z → ∀x ∃y, y ∈ z), where
y is fresh from x, z.)

Now ν(y) = x# µ(v) = ν(v) for each v ∈ V(ϕ), so by freshness substitution,
ν(y) # ηµ(ϕ). Thus ax-17 applies:

` (ϕ→ ∀x ϕ), where x, ϕ are disjoint

so that M |=ν (ϕ→ ∀y ϕ) as desired.
(⇐) In the reverse direction, we know T ` (ϕ → ∀x ϕ) is provable with

disjoint variable conditions {v, x} for each v ∈ V(ϕ) with v 6= x, and we want
NF(x, ϕ). Take a model M and valuations µ, ν that differ only at x, such that
for all v ∈ V(ϕ) other than x, µ(v) # µ(x) and µ(v) # ν(x). Let ν be extended
as before, choosing some y /∈ V(ϕ) and setting ν(y) = µ(x). Then our goal is to
show M |=ν ϕ↔ ϕ[x→ y], where ϕ[x→ y] is the result of (textually) replacing
all x variables in ϕ with y, or just M |=ν ϕ→ ϕ[x→ y] by symmetry.

Since ϕ → ∀x ϕ is provable this reduces to M |=ν ∀x ϕ → ϕ[x → y].
Application of a4v reduces the goal to M |=ν x = y → (ϕ↔ ϕ[x→ y]),which is
provable by induction on ϕ using equality theorems. The interesting case is when
ϕ = ∀z ψ. If z = x (or z = y, by symmetry), this is M |=ν x = y → (∀x ψ ↔
∀y ψ[x→ y]), and we can drop the hypothesis x = y and apply cbvalv to reduce;
while if z 6= x and z 6= y, this is M |=ν x = y → (∀z ψ ↔ ∀z ψ[x→ y]) which is
reducible using albidv. In either case the disjoint variable conditions are satisfied

http://us.metamath.org/mpegif/ax-17.html
http://us.metamath.org/mpegif/a4v.html
http://us.metamath.org/mpegif/cbvalv.html
http://us.metamath.org/mpegif/albidv.html

18 Mario Carneiro

because ν(x), ν(y), ν(z) are all fresh from each other by assumption (note that
z ∈ V(ϕ)). ut

Remark 6. It is unfortunate that we must reprove that equality is preserved un-
der substitution, since we already have this from Theorem 19. This is necessary
because conditional equality does not necessarily behave the same way as uncon-
ditional equality, which is what we were reasoning about in the previous section,
and in any case something resembling set.mm implication is not even available
in the more general situation.

Remark 7. It should be noted that the assumption of disjointness in Theorem 20,
while necessary for the biconditional, is not usually used. That is, not-free the-
orems in set.mm are usually established with few or no disjoint variable condi-
tions, because these compose better. We can safely add these superfluous DV
conditions in the final step to use the theorem.

To use Theorem 20, we note that from hbal, ` ∀x vph → ∀x ∀x ϕ (with no
DV conditions), NF(x,∀x ϕ) is true, so Theorem 17(3) allows us to map x 7→ x
and ϕ 7→ e for any expression e (which may contain x), and then NF(x, ∀x e) is
true. That is, x is bound in any expression of the form ∀x −, which matches our
intuition for bound variables. Theorem 17(2) then allows us to prove NF(x, ψ ∨
∀x ϕ) and similar expressions as well.

If σ = {x 7→ x, ϕ 7→ e} is a substitution and NF(y,∀x e) for all y such that
x ∈ V(σ(y)), then NF(x, σ(∀x e)).

Using Theorem 15, Theorem 17

References

1. Carneiro, M.: Models for Metamath. Preprint, arXiv:1601.07699 [math.LO].
2. Megill, N.: Metamath: A Computer Language for Pure Mathematics. Lulu Pub-

lishing, Morrisville, North Carolina (2007), http://us.metamath.org/downloads/
metamath.pdf

3. Tarski, A.: “A Simplified Formalization of Predicate Logic with Identity,” Archiv
für Mathematische Logik und Grundlagenforschung, 7:61-79 (1965) [QA.A673].

4. Hofstadter, D.: Gödel, Escher, Bach. Basic Books, Inc., New York (1979) [QA9.H63
1980].

http://us.metamath.org/mpegif/hbal.html
http://arxiv.org/abs/1601.07699
http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf

	Definitions in Metamath
	Introduction
	Modifications from models
	Extra notation from models

	The category of models of a formal system
	Extensions
	Conservative and definitional extensions

	Definitions
	Definitions in set.mm

