Mario Carneiro
July 1, 2014

Natural Deduction inthe
Metamath Proof Language

What is Metamath?

* A computer language for writing mathematical proofs
* A program to verify proofs in the Metamath language

* Alibrary of completed proofs

* Almost 20000 proofs exist in set.mm, the main collection of proofs based
primarily on ZFC set theory

 Covers introductory material in set theory, category theory, real analysis,
number theory, algebra, topology, linear algebra, lattice theory, etc.

How does it work?

* Consider a logician’s “formal proof”

* Formulas look something like (v; € v, = Vv, v; € v,), with
individual variables and no metavariables

* There are an infinite number of axioms, because there are no
schemes (although axiomhood is decidable)

* Using schemes, each axiom is a substitution instance of just a few
axiom schemes like (cp - - cp))

* In metamath, the “"scheme” concept is extended to theorems

How does it work?

* Each step of a proof uses
metavariables E‘TEI;—
* The result of the proofis a s
. Proof of Theorem 1d1
theorem SCheme, WhICh W’ﬁ Ref Expression
I SV PR

can be substituted in later
theorems

* 1-1 correspondence of Bk
proof steps to logician’s S—
\\formal prOOf” This theorem is referenced by: pm4 24 676 £

This theorem was proved from axioms: ax-1: ax-2 ¢ ax-mp @

Advantages

* Conceptually simple foundations

* Core verifier is very small (one independent verifier is =300 lines of
python)

* Fast proof verification (=6 sec to verify 20000 proofs)

» Axioms are user-specified, so it is not tied to any particular logical
foundation

* Each proofin the Proof Explorer lists the axioms that were used to prove it,
so it is possible to, say, track AC usage in a proof

Comparison to Mizar

* Proofs are in the form of formulas, not natural language

* Steps are much smaller in scope
* Similar to C versus assembly
* Possible target for "“compilation” from higher level languages

 Simple open source verifier, public domain proofs
* Follows QED philosophy: open source means independent verification

* No concept of “"exported theorems”

* All theorems have globally unique labels and are accessible by any later
proof

* Hilbert-style proof system (every step of a proof is a theorem)

Some important theorems

* The following theorems have been formalized in set.mm:

* Russell’s paradox * Infinitude of the primes
e Cantor’'s theorem J Fu_ndame_ntaITheorem of
e Schroder-Bernstein Theorem Arithmetic

Bertrand’s postulate
Fundamental group of topology
Sum of k-th powers

Formula for Pythagorean triples
Cauchy-Schwarz inequality
Descargues’s theorem

Baire category theorem

Riesz representation theorem

e Zorn's lemma

* Irrationality of V2

* Countability of Q

e Euler'sthm. & Fermat’s little thm.
* Uncountability of R

e Bezout's theorem

 Heine-Borel theorem

* Bolzano-Weierstrass theorem

Some important theorems

* The following theorems have been formalized in set.mm:

* Russell’s paradox * Infinitude of the primes
e Cantor’'s theorem J Fu_ndame_ntaITheorem of
e Schroder-Bernstein Theorem Arithmetic

Bertrand'’s postulate
Fundamental group of topology
Sum of k-th powers

Formula for Pythagorean triples
Cauchy-Schwarz inequality
Descargues’s theorem

Baire category theorem

Riesz representation theorem

e Zorn's lemma

* Irrationality of V2

* Countability of Q

e Euler'sthm. & Fermat’s little thm.
* Uncountability of R

e Bezout's theorem

 Heine-Borel theorem

e Bolzano-Weierstrass theorem

Some important theorems

* The following theorems have been formalized in set.mm:

* Russell’s paradox * Infinitude of the primes
e Cantor’'s theorem . Fu_ndame_ntaITheorem of
e Schroder-Bernstein Theorem Arithmetic

Bertrand'’s postulate
Fundamental group of topology
Sum of k-th powers

Formula for Pythagorean triples
Cauchy-Schwarz inequality
Descargues’s theorem

Baire category theorem

Riesz representation theorem

e Zorn's lemma

* Irrationality of V2

* Countability of Q

e Euler'sthm. & Fermat’s little thm.
* Uncountability of R

e Bezout's theorem

 Heine-Borel theorem

e Bolzano-Weierstrass theorem

Deduction proofs

* Developed to allow natural deduction in
Metamath

Theorem ovolice e * Each hypothesis and the conclusion start with
Description: The measure of a closed interval. \\ 17
(Contributed by Mario Carneiro, 14-Jun-2014) (p —

Hypotheses

Ref | Expression * Substitutions of (¢ A --+) for ¢ take the place

ovolicc 1|- (v — A e B)

of assumption discharge

Aserton » Relies on Metamath’s wff metavariables in an

Ref Expression c
ovolice|- (© — (vol*(A[]B)) = (B — A)) essential wa Yy

Deduction proofs

Theorem ovolice 13560

Description: The measure of a closed mterval.
{Contributed by Mario Carneiro, 14-Jun-2014)

Hypotheses

Ref Expression

Theorem ovolicel 1350
Description: The measure of a closed interval is lower bounded
by its length. (Contributed by Mario Cameiro, 13-Jun-2014))
Hyvpotheses

Ref Expression

ovolice.l |[F{ip — A R)

Assertion

Deduction Theorem

* A theorem of classical logic which justifies natural deduction proof
methods

c IfT'U{p} 1Y, thenT + (0 -)

* The proof operates by modifying each proof step in a proof of
F } F 1 to produce an equivalent proof of I' - (¢ —)

* We can't use this “theorem” directly in Metamath because it is at the
meta-proof level
* We work with actual proofs — we need to actually show a proof, not just prove
that a proof exists nonconstructively

* But we can “implement” the theorem’s reductions to produce an actual
proof

* Efficiency matters!

Deduction Theorem

* The textbook deduction theorem works on a logician’s “formal
proof”: no theorems or metavariables allowed

* Every step is an instance of one of the axioms, or the inference rule
ax-mp

I def

* Each step S;isconvertedto S; = ¢ — §;

* If §; isan axiomorin [, then ¢ — §; is proven in two extra steps
from S; (theorem ali)

* It S; is ax-mp applied to two previous steps S;, (Sj - Si), then
¢ — §; can be proven in three steps from ¢ — §;, ¢ - (Sj - Si)
(theorem mpd)

Axioms of pmpusmunal c:lll:ulus

Deduction Theorem

* If §; is @ (the assumption), then ¢ — ¢ is proven in five steps
(theorem id) from no assumptions

* Result: A =3x increase in number of steps of a direct-from-axioms
oroof

* If we allow the usage of theorems ali, mpd, id, this can be
decreased to 1x, but that's not fair since the original proof had no
theorem references

Deduction Theorem, v2

* Consider the general case, with a set of theorems all referencing
each other

* We count steps as the sum of the steps in each theorem, even if a
theorem is used many times with different substitutions

* exponential gain over direct-from-axioms step count

* Construct a set A of basic theorems that we will need
* ali, mpd, id
 aliapplied to each axiom

* Our transformation will add "¢ —" as a prefix to each hypothesis
and the conclusion of every theorem T; in the collection

Deduction Theorem, v2

* The result is the statement that I' - ¢ implies (¢ = I') - (¢ — V)

 To get the standard version "' U {¢} F ¥ implies ' - (¢ —)", apply alito
each hypothesis and prove the redundant hypothesis (¢ — ¢) usingid

* Transformation is the same as before, only now we use one step proofs
only

* If S; is an axiom, then ¢ — S; is a theorem from A4
i S, (Sj = Si) = §; is an application of ax-mp, then
Q> S, - (Sj — Sl-) = ¢ — S; is an application of mpd

* If S; is an application of a previous theorem Ty, then the transformed
theorem T}, which already has “¢ —” in its hypotheses and conclusion,
correctly proves S; from the transformed previous steps

Deduction Theorem, v2

* The net result is that the total number of steps increases only by
the number of steps in the theorems of 4, which is a fixed constant

* But we had to change every theorem in the collection just to discharge one
hypothesis in one theorem!

* Solution: theorems imp, ex: (((p A1) —)() = (cp - (-)())

* Call a 1-deduction a theorem where each hypothesis and
conclusion is already in the form (¢ — -+), a 2-deduction for

theorems of the form (ga - () - -)), etc.

* We want to keep the old versions of each theorem, to minimize the
effect on the collection

Multiple application

* Call a 1-deduction a theorem where each hypothesis and
conclusion is already in the form (¢ — -+), a 2-deduction for

theorems of the form (cp - (Y - -)), etc.

* The algorithm just described turns a 0-deduction into a 1-
deduction, a 1-deduction into a 2-deduction, etc.

* Any usage of a 2-deduction theorem can be converted to the
equivalent 1-deduction theorem by using imp on each hypothesis

(turns ((p - - .-)) into (((p AY) — -)) and ex on the
conclusion (goes the other direction)

* Overhead proportional to the number of hypotheses

Conclusion

* All theorems that are already 1-deductions and only reference 1-
deductions are left unchanged

* Algorithm is idempotent on its output

* In a typical application, only the target theorem is modified, and
overhead is proportional to the number of hypotheses to the
theorem

* fF'U{p} + Yinnsteps, thenl (¢ =») inn+ |I'| + O(1) steps

* Natural deduction can be implemented in a Hilbert system like
Metamath with only a constant overhead, if |I'| is bounded

* Not discussed: predicate calculus & bound variables
* Empirical evidence thatitis rarely an issue

Questions

