

Mario Carneiro July 1, 2014

Natural Deduction in the Metamath Proof Language

What is Metamath?

- A computer language for writing mathematical proofs
- A program to verify proofs in the Metamath language
- A library of completed proofs
 - Almost 20000 proofs exist in set.mm, the main collection of proofs based primarily on ZFC set theory
 - Covers introductory material in set theory, category theory, real analysis, number theory, algebra, topology, linear algebra, lattice theory, etc.

How does it work?

- Consider a logician's "formal proof"
- Formulas look something like $(v_1 \in v_2 \to \forall v_0 \ v_1 \in v_2)$, with individual variables and no metavariables
- There are an infinite number of axioms, because there are no schemes (although axiomhood is decidable)
- Using schemes, each axiom is a substitution instance of just a few axiom schemes like $(\varphi \to (\psi \to \varphi))$
- In metamath, the "scheme" concept is extended to theorems

How does it work?

- Each step of a proof uses metavariables
- The result of the proof is a theorem scheme, which can be substituted in later theorems
- 1-1 correspondence of proof steps to logician's "formal proof"

Proof of Theorem idl

Step	Нур	Ref	Expression		
1		<u>ax-1</u> 5	$_{.2} \vdash (\varphi \rightarrow (\varphi \rightarrow \varphi))$		
2		<u>ax-1</u> 5	$ \vdash (\varphi \to ((\varphi \to \varphi) \to \varphi))$		
3		<u>ax-2</u> 6	$ \exists \vdash ((\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)))$		
4	<u>2, 3</u>	ax-mp s	$_{2}\vdash((\varphi\rightarrow(\varphi\rightarrow\varphi))\rightarrow(\varphi\rightarrow\varphi))$		
5	<u>1</u> , <u>4</u>	ax-mp s	$_1 \vdash (\varphi \rightarrow \varphi)$		

Colors of variables: wff set class

Syntax hints: $\rightarrow \underline{wi}$ 4

This theorem is referenced by: $\underline{pm4.24}$ 676 $\underline{fz0n}$ 13802 $\underline{ldilval}$ 19735 $\underline{dib0}$ 20846 $\underline{dih1}$ 20952 $\underline{dihglblem5apre}$ 20954

This theorem was proved from axioms: <u>ax-1 5 ax-2 6 ax-mp</u> 8

Copyright terms: Public domain

Advantages

- Conceptually simple foundations
- Core verifier is very small (one independent verifier is ≈300 lines of python)
- Fast proof verification (≈6 sec to verify ≈20000 proofs)
- Axioms are user-specified, so it is not tied to any particular logical foundation
 - Each proof in the Proof Explorer lists the axioms that were used to prove it, so it is possible to, say, track AC usage in a proof

Comparison to Mizar

- Proofs are in the form of formulas, not natural language
- Steps are much smaller in scope
 - Similar to C versus assembly
 - Possible target for "compilation" from higher level languages
- Simple open source verifier, public domain proofs
 - Follows QED philosophy: open source means independent verification
- No concept of "exported theorems"
 - All theorems have globally unique labels and are accessible by any later proof
- Hilbert-style proof system (every step of a proof is a theorem)

Some important theorems

- The following theorems have been formalized in set.mm:
 - Russell's paradox
 - Cantor's theorem
 - Schröder-Bernstein Theorem
 - Zorn's lemma
 - Irrationality of $\sqrt{2}$
 - Countability of Q
 - Euler's thm. & Fermat's little thm.
 - Uncountability of $\mathbb R$
 - Bezout's theorem
 - Heine-Borel theorem
 - Bolzano-Weierstrass theorem

- Infinitude of the primes
- Fundamental Theorem of Arithmetic
- Bertrand's postulate
- Fundamental group of topology
- Sum of *k*-th powers
- Formula for Pythagorean triples
- Cauchy-Schwarz inequality
- Descargues's theorem
- Baire category theorem
- Riesz representation theorem

Some important theorems

- The following theorems have been formalized in set.mm:
 - Russell's paradox
 - Cantor's theorem
 - Schröder-Bernstein Theorem
 - Zorn's lemma
 - Irrationality of $\sqrt{2}$
 - Countability of Q
 - Euler's thm. & Fermat's little thm.
 - Uncountability of $\mathbb R$
 - Bezout's theorem
 - Heine-Borel theorem
 - Bolzano-Weierstrass theorem

- Infinitude of the primes
- Fundamental Theorem of Arithmetic
- Bertrand's postulate
- Fundamental group of topology
- Sum of *k*-th powers
- Formula for Pythagorean triples
- Cauchy-Schwarz inequality
- Descargues's theorem
- Baire category theorem
- Riesz representation theorem

Some important theorems

- The following theorems have been formalized in set.mm:
 - Russell's paradox
 - Cantor's theorem
 - Schröder-Bernstein Theorem
 - Zorn's lemma
 - Irrationality of $\sqrt{2}$
 - Countability of Q
 - Euler's thm. & Fermat's little thm.
 - Uncountability of $\mathbb R$
 - Bezout's theorem
 - Heine-Borel theorem
 - Bolzano-Weierstrass theorem

- Infinitude of the primes
- Fundamental Theorem of Arithmetic
- Bertrand's postulate
- Fundamental group of topology
- Sum of *k*-th powers
- Formula for Pythagorean triples
- Cauchy-Schwarz inequality
- Descargues's theorem
- Baire category theorem
- Riesz representation theorem

Deduction proofs

Theorem ovolice 13569

Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.)

Hypotheses

Ref	Expression
ovolicc.1	$\vdash (\varphi \to A \in \mathbb{R})$
ovolicc.2	$\vdash (\varphi \to B \in \mathbb{R})$
ovolicc.3	$\vdash (\varphi \to A \le B)$

Assertion

Ref	Expression		
ovolicc	$\vdash (\varphi \rightarrow (\text{vol}^*(A[,]B)) = (B - A))$		

- Developed to allow natural deduction in Metamath
- Each hypothesis and the conclusion start with " $\phi \rightarrow$ "
- Substitutions of $(\varphi \land \cdots)$ for φ take the place of assumption discharge
- Relies on Metamath's wff metavariables in an essential way

Deduction proofs

Theorem ovolicc 13569

Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.)

Hypotheses

	TT, Potters			
Ref	Expression			
ovolicc.1	$\vdash (\varphi \to A \in \mathbb{R})$			
ovolicc.2	$\vdash (\varphi \to B \in \mathbb{R})$			
ovolicc.3	$\vdash (\varphi \to A \le B)$			

Assertion

Ref	Expression		
ovolicc	$\vdash (\varphi \to (\text{vol}^{*}(A[,]B)) = (B - A))$		

12	0, 10, 11	SYIZATIC 703	$(B-A) \wedge (B-A) \leq (\operatorname{vol}^*(A[,]B)))))$
13	<u>1</u>	adantr 490	$_{5} \vdash ((\varphi \land x \in \mathbb{R}^{+}) \to A \in \mathbb{R})$
14	<u>2</u>	adantr 490	$_{5} \vdash ((\varphi \land x \in \mathbb{R}^{+}) \to B \in \mathbb{R})$
15		ovolicc.3	$\dots _{6} \vdash (\varphi \rightarrow A \leq B)$
16	<u>15</u>	adantr 490	$_{5} \vdash ((\varphi \land x \in \mathbb{R}^{+}) \to A \leq B)$
17		simpr 485	$_{5}\vdash((\varphi\land x\in\mathbb{R}^{+})\to x\in\mathbb{R}^{+})$
18	<u>13</u> , <u>14</u> , <u>16</u> , <u>17</u>	ovolicc1 13562	$\dots 4 \vdash ((\varphi \land \mathbf{x} \in \mathbb{R}^+) \to (\text{vol}^*(A[,]B)) \leq ((B - A) + \mathbf{x}))$
19	<u>18</u>	ralrimiva 2317	$: \vdash (\varphi \to \forall \mathbf{x} \in \mathbb{R}^+ (\text{vol}^{*}(A[,]B)) \le ((B-A) + \mathbf{x}))$
			$\dots 4 \vdash (((\text{vol*}(A[,]B)) \in \mathbb{R}^* \land (B-A) \in \mathbb{R}) \rightarrow ((\text{vol*}(A[,]B)))$

Theorem ovolicc1 13562

Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.)

Hypotheses

Ref	Expression
ovolicc.1	$\vdash (\varphi \to A \in \mathbb{R})$
ovolicc.2	$\vdash (\varphi \to B \in \mathbb{R})$
ovolicc.3	$\vdash (\varphi \to A \leq B)$
ovolicc1.4	$\vdash (\varphi \to C \in \mathbb{R}^+)$

Assertion

Ref	Expression		
ovoliccl	$\vdash (\varphi \rightarrow (\text{vol}^{*}(A[,]B)) \leq ((B-A)+C))$		

Deduction Theorem

- A theorem of classical logic which justifies natural deduction proof methods
- If $\Gamma \cup \{\varphi\} \vdash \psi$, then $\Gamma \vdash (\varphi \rightarrow \psi)$
- The proof operates by modifying each proof step in a proof of $\Gamma \cup \{\varphi\} \vdash \psi$ to produce an equivalent proof of $\Gamma \vdash (\varphi \rightarrow \psi)$
- We can't use this "theorem" directly in Metamath because it is at the meta-proof level
 - We work with actual proofs we need to actually show a proof, not just prove that a proof exists nonconstructively
- But we can "implement" the theorem's reductions to produce an actual proof
 - Efficiency matters!

Deduction Theorem

Axioms of propositional calculus			
Axiom Simp ax-1		$\vdash (\varphi \rightarrow (\psi \rightarrow \varphi))$	
Axiom Frege	ax-2	$\vdash ((\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)))$	
Axiom Transp	ax-3	$\vdash ((\lnot \varphi \to \lnot \psi) \to (\psi \to \varphi))$	
Rule of Modus Ponens	ax-mp	$\vdash \varphi \And \vdash (\varphi \rightarrow \psi) \Rightarrow \vdash \psi$	

- The textbook deduction theorem works on a logician's "formal proof": no theorems or metavariables allowed
- Every step is an instance of one of the axioms, or the inference rule ax-mp
- Each step S_i is converted to $S_i' \stackrel{\text{def}}{=} \varphi \to S_i$
- If S_i is an axiom or in Γ , then $\varphi \to S_i$ is proven in two extra steps from S_i (theorem a1i)
- If S_i is ax-mp applied to two previous steps S_j , $(S_j \to S_i)$, then $\varphi \to S_i$ can be proven in three steps from $\varphi \to S_j$, $\varphi \to (S_j \to S_i)$ (theorem mpd)

Deduction Theorem

Axioms of propositional calculus			
Axiom Simp	ax-l	$\vdash (\varphi \rightarrow (\psi \rightarrow \varphi))$	
Axiom Frege	ax-2	$\vdash ((\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)))$	
Axiom Transp	ax-3	$\vdash ((\lnot \varphi \to \lnot \psi) \to (\psi \to \varphi))$	
Rule of Modus Ponens	ax-mp	$\vdash \varphi \And \vdash (\varphi \rightarrow \psi) \Rightarrow \vdash \psi$	

- If S_i is φ (the assumption), then $\varphi \to \varphi$ is proven in five steps (theorem id) from no assumptions
- Result: A ≈3x increase in number of steps of a direct-from-axioms proof
- If we allow the usage of theorems a1i, mpd, id, this can be decreased to 1x, but that's not fair since the original proof had no theorem references

Deduction Theorem, v2

- Consider the general case, with a set of theorems all referencing each other
- We count steps as the sum of the steps in each theorem, even if a theorem is used many times with different substitutions
 - exponential gain over direct-from-axioms step count
- Construct a set A of basic theorems that we will need
 - a1i, mpd, id
 - a1i applied to each axiom
- Our transformation will add " $\varphi \to$ " as a prefix to each hypothesis and the conclusion of every theorem T_i in the collection

Deduction Theorem, v2

- The result is the statement that $\Gamma \vdash \psi$ implies $(\varphi \to \Gamma) \vdash (\varphi \to \psi)$
 - To get the standard version " $\Gamma \cup \{\varphi\} \vdash \psi$ implies $\Gamma \vdash (\varphi \rightarrow \psi)$ ", apply a1i to each hypothesis and prove the redundant hypothesis $(\varphi \rightarrow \varphi)$ using id
- Transformation is the same as before, only now we use one step proofs only
- If S_i is an axiom, then $\varphi \to S_i$ is a theorem from A
- If S_j , $(S_j \to S_i) \Rightarrow S_i$ is an application of ax-mp, then $\varphi \to S_j$, $\varphi \to (S_j \to S_i) \Rightarrow \varphi \to S_i$ is an application of mpd
- If S_i is an application of a previous theorem T_k , then the transformed theorem T'_k , which already has " $\varphi \to$ " in its hypotheses and conclusion, correctly proves S'_i from the transformed previous steps

Deduction Theorem, v2

- The net result is that the total number of steps increases only by the number of steps in the theorems of A_{\bullet} , which is a fixed constant
 - But we had to change every theorem in the collection just to discharge one hypothesis in one theorem!
- Solution: theorems imp, ex: $((\varphi \land \psi) \to \chi) \Leftrightarrow (\varphi \to (\psi \to \chi))$
- Call a 1-deduction a theorem where each hypothesis and conclusion is already in the form $(\varphi \to \cdots)$, a 2-deduction for theorems of the form $(\varphi \to (\psi \to \cdots))$, etc.
- We want to keep the old versions of each theorem, to minimize the effect on the collection

Multiple application

- Call a 1-deduction a theorem where each hypothesis and conclusion is already in the form $(\varphi \to \cdots)$, a 2-deduction for theorems of the form $(\varphi \to (\psi \to \cdots))$, etc.
- The algorithm just described turns a 0-deduction into a 1deduction, a 1-deduction into a 2-deduction, etc.
- Any usage of a 2-deduction theorem can be converted to the equivalent 1-deduction theorem by using imp on each hypothesis (turns $(\varphi \rightarrow (\psi \rightarrow \cdots))$ into $((\varphi \land \psi) \rightarrow \cdots)$) and ex on the conclusion (goes the other direction)
- Overhead proportional to the number of hypotheses

Conclusion

- All theorems that are already 1-deductions and only reference 1deductions are left unchanged
 - Algorithm is idempotent on its output
- In a typical application, only the target theorem is modified, and overhead is proportional to the number of hypotheses to the theorem
 - If $\Gamma \cup \{\varphi\} \vdash \psi$ in n steps, then $\Gamma \vdash (\varphi \rightarrow \psi)$ in $n + |\Gamma| + O(1)$ steps
- Natural deduction can be implemented in a Hilbert system like Metamath with only a constant overhead, if $|\Gamma|$ is bounded
- Not discussed: predicate calculus & bound variables
 - Empirical evidence that it is rarely an issue

Questions