$( <MM> <PROOF_ASST> THEOREM=fctop LOC_AFTER=?
$d x y z A n u $d n B $d n C $d x B $d x C $d n D $d x v $d A v $d n v $d u v $d v z
h1::fctop.1 |- A e. V 2::ax-17 |- ( y e. u → A. x y e. u ) 3::hbab1 |- ( y e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → A. x y e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) 4:2,3:dfss2f |- ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ A. x ( x e. u → x e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) ) 5::abid |- ( x e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) 6:5:imbi2i |- ( ( x e. u → x e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) <→ ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 7:6:albii |- ( A. x ( x e. u → x e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) <→ A. x ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) )
16:?: |- ( ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) → E. n e. om ( A \ x ) ~~ n ) 17:16:a1i |- ( x (_ A → ( ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) → E. n e. om ( A \ x ) ~~ n ) ) 18:17:imp |- ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) → E. n e. om ( A \ x ) ~~ n ) 19:18:a1i |- ( x e. u → ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) → E. n e. om ( A \ x ) ~~ n ) ) 20:19:a2i |- ( ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) → ( x e. u → E. n e. om ( A \ x ) ~~ n ) )
21::visset |- y e. V 22::eliin |- ( y e. V → ( y e. |^|_ x e. u ( A \ x ) <→ A. x e. u y e. ( A \ x ) ) ) 23:21,22:ax-mp |- ( y e. |^|_ x e. u ( A \ x ) <→ A. x e. u y e. ( A \ x ) ) 24:23:a1i |- ( x e. u → ( y e. |^|_ x e. u ( A \ x ) <→ A. x e. u y e. ( A \ x ) ) ) 25::pm2.27 |- ( x e. u → ( ( x e. u → y e. ( A \ x ) ) → y e. ( A \ x ) ) ) 26:25:a4sd |- ( x e. u → ( A. x ( x e. u → y e. ( A \ x ) ) → y e. ( A \ x ) ) ) 27::df-ral |- ( A. x e. u y e. ( A \ x ) <→ A. x ( x e. u → y e. ( A \ x ) ) ) 28:26,27:syl5ib |- ( x e. u → ( A. x e. u y e. ( A \ x ) → y e. ( A \ x ) ) ) 29:24,28:sylbid |- ( x e. u → ( y e. |^|_ x e. u ( A \ x ) → y e. ( A \ x ) ) ) 30:29:19.21aiv |- ( x e. u → A. y ( y e. |^|_ x e. u ( A \ x ) → y e. ( A \ x ) ) )
36:?: |- ( ( x e. u → ( E. n e. om ( A \ x ) ~~ n /\ |^|_ x e. u ( A \ x ) (_ ( A \ x ) ) ) → ( -. u = (/) → E. n e. om |^|_ x e. u ( A \ x ) ~~ n ) ) 37:35,36:syl |- ( ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) → ( -. u = (/) → E. n e. om |^|_ x e. u ( A \ x ) ~~ n ) )
52::iinss |- ( E. y e. u ( A \ x ) (_ ( A \ x ) → |^|_ y e. u ( A \ x ) (_ ( A \ x ) )
53:?: |- ( ( -. u = (/) /\ ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) → ( E. n e. om ( A \ x ) ~~ n /\ |^|_ y e. u ( A \ x ) (_ ( A \ x ) ) )
54::ssfi |- ( ( E. n e. om ( A \ x ) ~~ n /\ |^|_ y e. u ( A \ x ) (_ ( A \ x ) ) → E. n e. om |^|_ y e. u ( A \ x ) ~~ n )
55::orc |- (
( ( E. n e. om ( A \ x ) ~~ n /\ |^|_ y e. u ( A \ x ) (_ ( A \ x ) ) -> E. n e. om |^|_ y e. u ( A \ x ) ~~ n ) -> ( ( ( E. n e. om ( A \ x ) ~~ n /\ |^|_ y e. u ( A \ x ) (_ ( A \ x ) ) -> E. n e. om |^|_ y e. u ( A \ x ) ~~ n ) \/ ( ( E. n e. om ( A \ x ) ~~ n /\ |^|_ y e. u ( A \ x ) (_ ( A \ x ) ) -> U. u = (/) ) ) )
68:47,67:pm2.61i |- ( ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) → ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) 69:68:a4s |- ( A. x ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) → ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) 70:15,69:jca |- ( A. x ( x e. u → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) → ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) ) 71:7,70:sylbi |- ( A. x ( x e. u → x e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) → ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) ) 72::sseq1 |- ( x = U. u → ( x (_ A <→ U. u (_ A ) ) 73::difeq2 |- ( x = U. u → ( A \ x ) = ( A \ U. u ) ) 74:73:breq1d |- ( x = U. u → ( ( A \ x ) ~~ n <→ ( A \ U. u ) ~~ n ) ) 75:74:rexbidv |- ( x = U. u → ( E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ U. u ) ~~ n ) ) 76::eqeq1 |- ( x = U. u → ( x = (/) <→ U. u = (/) ) ) 77:75,76:orbi12d |- ( x = U. u → ( ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) <→ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) ) 78:72,77:anbi12d |- ( x = U. u → ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) ) ) 79:78:bicomd |- ( x = U. u → ( ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) <→ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 80:79:biimpd |- ( x = U. u → ( ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 81::anc2l |- ( ( x = U. u → ( ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) → ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) → ( x = U. u → ( ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) → ( x = U. u /\ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) ) ) 82:80,81:ax-mp |- ( x = U. u → ( ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) → ( x = U. u /\ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) ) 83:82:a4w |- ( ( U. u (_ A /\ ( E. n e. om ( A \ U. u ) ~~ n \/ U. u = (/) ) ) → E. x ( x = U. u /\ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 84:71,83:syl |- ( A. x ( x e. u → x e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) → E. x ( x = U. u /\ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 85:4,84:sylbi |- ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → E. x ( x = U. u /\ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 86::clelab |- ( U. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ E. x ( x = U. u /\ ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) ) 87:85,86:sylibr |- ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → U. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) 88:87:ax-gen |- A. u ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → U. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) 89::ssinss1 |- ( u (_ A → ( u i^i z ) (_ A ) 90:89:adantr |- ( ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) → ( u i^i z ) (_ A ) 91:90:adantr |- ( ( ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) /\ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) → ( u i^i z ) (_ A ) 92::anddi |- ( ( ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) <→ ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) \/ ( E. n e. om ( A \ u ) ~~ n /\ z = (/) ) ) \/ ( ( u = (/) /\ E. n e. om ( A \ z ) ~~ n ) \/ ( u = (/) /\ z = (/) ) ) ) ) 93::ax-17 |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → A. x ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) ) 94::breq1 |- ( x = ( A \ u ) → ( x ~~ n <→ ( A \ u ) ~~ n ) ) 95:94:rexbidv |- ( x = ( A \ u ) → ( E. n e. om x ~~ n <→ E. n e. om ( A \ u ) ~~ n ) ) 96:95:biimprd |- ( x = ( A \ u ) → ( E. n e. om ( A \ u ) ~~ n → E. n e. om x ~~ n ) ) 97:96:com12 |- ( E. n e. om ( A \ u ) ~~ n → ( x = ( A \ u ) → E. n e. om x ~~ n ) ) 98::breq1 |- ( x = ( A \ z ) → ( x ~~ n <→ ( A \ z ) ~~ n ) ) 99:98:rexbidv |- ( x = ( A \ z ) → ( E. n e. om x ~~ n <→ E. n e. om ( A \ z ) ~~ n ) ) 100:99:biimprd |- ( x = ( A \ z ) → ( E. n e. om ( A \ z ) ~~ n → E. n e. om x ~~ n ) ) 101:100:com12 |- ( E. n e. om ( A \ z ) ~~ n → ( x = ( A \ z ) → E. n e. om x ~~ n ) ) 102:97,101:anim12i |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( ( x = ( A \ u ) → E. n e. om x ~~ n ) /\ ( x = ( A \ z ) → E. n e. om x ~~ n ) ) ) 103::visset |- x e. V 104:103:elpr |- ( x e. { ( A \ u ) , ( A \ z ) } <→ ( x = ( A \ u ) \/ x = ( A \ z ) ) ) 105:104:imbi1i |- ( ( x e. { ( A \ u ) , ( A \ z ) } → E. n e. om x ~~ n ) <→ ( ( x = ( A \ u ) \/ x = ( A \ z ) ) → E. n e. om x ~~ n ) ) 106::jaob |- ( ( ( x = ( A \ u ) \/ x = ( A \ z ) ) → E. n e. om x ~~ n ) <→ ( ( x = ( A \ u ) → E. n e. om x ~~ n ) /\ ( x = ( A \ z ) → E. n e. om x ~~ n ) ) ) 107:105,106:bitr |- ( ( x e. { ( A \ u ) , ( A \ z ) } → E. n e. om x ~~ n ) <→ ( ( x = ( A \ u ) → E. n e. om x ~~ n ) /\ ( x = ( A \ z ) → E. n e. om x ~~ n ) ) ) 108:102,107:sylibr |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( x e. { ( A \ u ) , ( A \ z ) } → E. n e. om x ~~ n ) ) 109:93,108:19.21ai |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → A. x ( x e. { ( A \ u ) , ( A \ z ) } → E. n e. om x ~~ n ) ) 110::df-ral |- ( A. x e. { ( A \ u ) , ( A \ z ) } E. n e. om x ~~ n <→ A. x ( x e. { ( A \ u ) , ( A \ z ) } → E. n e. om x ~~ n ) ) 111:109,110:sylibr |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → A. x e. { ( A \ u ) , ( A \ z ) } E. n e. om x ~~ n ) 112::prfi |- E. n e. om { ( A \ u ) , ( A \ z ) } ~~ n 113::unifi |- ( ( E. n e. om { ( A \ u ) , ( A \ z ) } ~~ n /\ A. x e. { ( A \ u ) , ( A \ z ) } E. n e. om x ~~ n ) → E. n e. om U. { ( A \ u ) , ( A \ z ) } ~~ n ) 114:112,113:mpan |- ( A. x e. { ( A \ u ) , ( A \ z ) } E. n e. om x ~~ n → E. n e. om U. { ( A \ u ) , ( A \ z ) } ~~ n ) 115:111,114:syl |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → E. n e. om U. { ( A \ u ) , ( A \ z ) } ~~ n ) 116::difexg |- ( A e. V → ( A \ u ) e. V ) 117:1,116:ax-mp |- ( A \ u ) e. V 118::difexg |- ( A e. V → ( A \ z ) e. V ) 119:1,118:ax-mp |- ( A \ z ) e. V 120:117,119:unpr |- U. { ( A \ u ) , ( A \ z ) } = ( ( A \ u ) u. ( A \ z ) ) 121::difindi |- ( A \ ( u i^i z ) ) = ( ( A \ u ) u. ( A \ z ) ) 122:120,121:eqtr4 |- U. { ( A \ u ) , ( A \ z ) } = ( A \ ( u i^i z ) ) 123:122:breq1i |- ( U. { ( A \ u ) , ( A \ z ) } ~~ n <→ ( A \ ( u i^i z ) ) ~~ n ) 124:123:rexbii |- ( E. n e. om U. { ( A \ u ) , ( A \ z ) } ~~ n <→ E. n e. om ( A \ ( u i^i z ) ) ~~ n ) 125:115,124:sylib |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) 126::orc |- ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) → ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( u i^i z ) = (/) ) ) ) 127:125,126:ax-mp |- ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( u i^i z ) = (/) ) ) 128::pm4.78 |- ( ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( u i^i z ) = (/) ) ) <→ ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 129:127,128:mpbi |- ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 130::ineq2 |- ( z = (/) → ( u i^i z ) = ( u i^i (/) ) ) 131::in0 |- ( u i^i (/) ) = (/) 132:130,131:syl6eq |- ( z = (/) → ( u i^i z ) = (/) ) 133::olc |- ( ( z = (/) → ( u i^i z ) = (/) ) → ( ( z = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( z = (/) → ( u i^i z ) = (/) ) ) ) 134:132,133:ax-mp |- ( ( z = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( z = (/) → ( u i^i z ) = (/) ) ) 135::pm4.78 |- ( ( ( z = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( z = (/) → ( u i^i z ) = (/) ) ) <→ ( z = (/) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 136:134,135:mpbi |- ( z = (/) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 137:136:adantl |- ( ( E. n e. om ( A \ u ) ~~ n /\ z = (/) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 138:129,137:jaoi |- ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) \/ ( E. n e. om ( A \ u ) ~~ n /\ z = (/) ) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 139::ineq1 |- ( u = (/) → ( u i^i z ) = ( (/) i^i z ) ) 140::incom |- ( (/) i^i z ) = ( z i^i (/) ) 141::in0 |- ( z i^i (/) ) = (/) 142:140,141:eqtr |- ( (/) i^i z ) = (/) 143:139,142:syl6eq |- ( u = (/) → ( u i^i z ) = (/) ) 144::olc |- ( ( u = (/) → ( u i^i z ) = (/) ) → ( ( u = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( u = (/) → ( u i^i z ) = (/) ) ) ) 145:143,144:ax-mp |- ( ( u = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( u = (/) → ( u i^i z ) = (/) ) ) 146::pm4.78 |- ( ( ( u = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( u = (/) → ( u i^i z ) = (/) ) ) <→ ( u = (/) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 147:145,146:mpbi |- ( u = (/) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 148:147:adantr |- ( ( u = (/) /\ E. n e. om ( A \ z ) ~~ n ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 149::ineq1 |- ( u = (/) → ( u i^i z ) = ( (/) i^i z ) ) 150::incom |- ( (/) i^i z ) = ( z i^i (/) ) 151::in0 |- ( z i^i (/) ) = (/) 152:150,151:eqtr |- ( (/) i^i z ) = (/) 153:149,152:syl6eq |- ( u = (/) → ( u i^i z ) = (/) ) 154::olc |- ( ( u = (/) → ( u i^i z ) = (/) ) → ( ( u = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( u = (/) → ( u i^i z ) = (/) ) ) ) 155:153,154:ax-mp |- ( ( u = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( u = (/) → ( u i^i z ) = (/) ) ) 156::pm4.78 |- ( ( ( u = (/) → E. n e. om ( A \ ( u i^i z ) ) ~~ n ) \/ ( u = (/) → ( u i^i z ) = (/) ) ) <→ ( u = (/) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 157:155,156:mpbi |- ( u = (/) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 158:157:adantr |- ( ( u = (/) /\ z = (/) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 159:148,158:jaoi |- ( ( ( u = (/) /\ E. n e. om ( A \ z ) ~~ n ) \/ ( u = (/) /\ z = (/) ) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 160:138,159:jaoi |- ( ( ( ( E. n e. om ( A \ u ) ~~ n /\ E. n e. om ( A \ z ) ~~ n ) \/ ( E. n e. om ( A \ u ) ~~ n /\ z = (/) ) ) \/ ( ( u = (/) /\ E. n e. om ( A \ z ) ~~ n ) \/ ( u = (/) /\ z = (/) ) ) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 161:92,160:sylbi |- ( ( ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 162:161:ex |- ( ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) → ( ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 163:162:a1i |- ( z (_ A → ( ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) → ( ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) 164:163:com12 |- ( ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) → ( z (_ A → ( ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) 165:164:a1i |- ( u (_ A → ( ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) → ( z (_ A → ( ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) ) 166:165:imp43 |- ( ( ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) /\ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) → ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) 167:91,166:jca |- ( ( ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) /\ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) → ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 168::df-clab |- ( u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ [ u / x ] ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) 169::sban |- ( [ u / x ] ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( [ u / x ] x (_ A /\ [ u / x ] ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) 170::sbor |- ( [ u / x ] ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) <→ ( [ u / x ] E. n e. om ( A \ x ) ~~ n \/ [ u / x ] x = (/) ) ) 171:170:anbi2i |- ( ( [ u / x ] x (_ A /\ [ u / x ] ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( [ u / x ] x (_ A /\ ( [ u / x ] E. n e. om ( A \ x ) ~~ n \/ [ u / x ] x = (/) ) ) ) 172::ax-17 |- ( x (_ A → A. u x (_ A ) 173:172:sb6y |- ( [ u / x ] x (_ A <→ A. x ( x = u → x (_ A ) ) 174::ax-17 |- ( u (_ A → A. x u (_ A ) 175::sseq1 |- ( x = u → ( x (_ A <→ u (_ A ) ) 176:174,175:equsal |- ( A. x ( x = u → x (_ A ) <→ u (_ A ) 177:173,176:bitr |- ( [ u / x ] x (_ A <→ u (_ A ) 178::ax-17 |- ( E. n e. om ( A \ x ) ~~ n → A. u E. n e. om ( A \ x ) ~~ n ) 179:178:sb6y |- ( [ u / x ] E. n e. om ( A \ x ) ~~ n <→ A. x ( x = u → E. n e. om ( A \ x ) ~~ n ) ) 180::ax-17 |- ( E. n e. om ( A \ u ) ~~ n → A. x E. n e. om ( A \ u ) ~~ n ) 181::difeq2 |- ( x = u → ( A \ x ) = ( A \ u ) ) 182:181:breq1d |- ( x = u → ( ( A \ x ) ~~ n <→ ( A \ u ) ~~ n ) ) 183:182:rexbidv |- ( x = u → ( E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ u ) ~~ n ) ) 184:180,183:equsal |- ( A. x ( x = u → E. n e. om ( A \ x ) ~~ n ) <→ E. n e. om ( A \ u ) ~~ n ) 185:179,184:bitr |- ( [ u / x ] E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ u ) ~~ n ) 186::ax-17 |- ( x = (/) → A. u x = (/) ) 187:186:sb6y |- ( [ u / x ] x = (/) <→ A. x ( x = u → x = (/) ) ) 188::ax-17 |- ( u = (/) → A. x u = (/) ) 189::eqeq1 |- ( x = u → ( x = (/) <→ u = (/) ) ) 190:188,189:equsal |- ( A. x ( x = u → x = (/) ) <→ u = (/) ) 191:187,190:bitr |- ( [ u / x ] x = (/) <→ u = (/) ) 192:185,191:orbi12i |- ( ( [ u / x ] E. n e. om ( A \ x ) ~~ n \/ [ u / x ] x = (/) ) <→ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) 193:177,192:anbi12i |- ( ( [ u / x ] x (_ A /\ ( [ u / x ] E. n e. om ( A \ x ) ~~ n \/ [ u / x ] x = (/) ) ) <→ ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) ) 194:169,171,193:3bitr |- ( [ u / x ] ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) ) 195:168,194:bitr |- ( u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) ) 196::df-clab |- ( z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ [ z / x ] ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) 197::sban |- ( [ z / x ] ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( [ z / x ] x (_ A /\ [ z / x ] ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) ) 198::sbor |- ( [ z / x ] ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) <→ ( [ z / x ] E. n e. om ( A \ x ) ~~ n \/ [ z / x ] x = (/) ) ) 199:198:anbi2i |- ( ( [ z / x ] x (_ A /\ [ z / x ] ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( [ z / x ] x (_ A /\ ( [ z / x ] E. n e. om ( A \ x ) ~~ n \/ [ z / x ] x = (/) ) ) ) 200::ax-17 |- ( x (_ A → A. z x (_ A ) 201:200:sb6y |- ( [ z / x ] x (_ A <→ A. x ( x = z → x (_ A ) ) 202::ax-17 |- ( z (_ A → A. x z (_ A ) 203::sseq1 |- ( x = z → ( x (_ A <→ z (_ A ) ) 204:202,203:equsal |- ( A. x ( x = z → x (_ A ) <→ z (_ A ) 205:201,204:bitr |- ( [ z / x ] x (_ A <→ z (_ A ) 206::ax-17 |- ( E. n e. om ( A \ x ) ~~ n → A. z E. n e. om ( A \ x ) ~~ n ) 207:206:sb6y |- ( [ z / x ] E. n e. om ( A \ x ) ~~ n <→ A. x ( x = z → E. n e. om ( A \ x ) ~~ n ) ) 208::ax-17 |- ( E. n e. om ( A \ z ) ~~ n → A. x E. n e. om ( A \ z ) ~~ n ) 209::difeq2 |- ( x = z → ( A \ x ) = ( A \ z ) ) 210:209:breq1d |- ( x = z → ( ( A \ x ) ~~ n <→ ( A \ z ) ~~ n ) ) 211:210:rexbidv |- ( x = z → ( E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ z ) ~~ n ) ) 212:208,211:equsal |- ( A. x ( x = z → E. n e. om ( A \ x ) ~~ n ) <→ E. n e. om ( A \ z ) ~~ n ) 213:207,212:bitr |- ( [ z / x ] E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ z ) ~~ n ) 214::ax-17 |- ( x = (/) → A. z x = (/) ) 215:214:sb6y |- ( [ z / x ] x = (/) <→ A. x ( x = z → x = (/) ) ) 216::ax-17 |- ( z = (/) → A. x z = (/) ) 217::eqeq1 |- ( x = z → ( x = (/) <→ z = (/) ) ) 218:216,217:equsal |- ( A. x ( x = z → x = (/) ) <→ z = (/) ) 219:215,218:bitr |- ( [ z / x ] x = (/) <→ z = (/) ) 220:213,219:orbi12i |- ( ( [ z / x ] E. n e. om ( A \ x ) ~~ n \/ [ z / x ] x = (/) ) <→ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) 221:205,220:anbi12i |- ( ( [ z / x ] x (_ A /\ ( [ z / x ] E. n e. om ( A \ x ) ~~ n \/ [ z / x ] x = (/) ) ) <→ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) 222:197,199,221:3bitr |- ( [ z / x ] ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) 223:196,222:bitr |- ( z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) 224:195,223:anbi12i |- ( ( u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } /\ z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) <→ ( ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) /\ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) ) 225::visset |- u e. V 226:225:inex1 |- ( u i^i z ) e. V 227::sseq1 |- ( x = ( u i^i z ) → ( x (_ A <→ ( u i^i z ) (_ A ) ) 228::difeq2 |- ( x = ( u i^i z ) → ( A \ x ) = ( A \ ( u i^i z ) ) ) 229::breq1 |- ( ( A \ x ) = ( A \ ( u i^i z ) ) → ( ( A \ x ) ~~ n <→ ( A \ ( u i^i z ) ) ~~ n ) ) 230:229:rexbidv |- ( ( A \ x ) = ( A \ ( u i^i z ) ) → ( E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ ( u i^i z ) ) ~~ n ) ) 231:228,230:syl |- ( x = ( u i^i z ) → ( E. n e. om ( A \ x ) ~~ n <→ E. n e. om ( A \ ( u i^i z ) ) ~~ n ) ) 232::eqeq1 |- ( x = ( u i^i z ) → ( x = (/) <→ ( u i^i z ) = (/) ) ) 233:231,232:orbi12d |- ( x = ( u i^i z ) → ( ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) <→ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 234:227,233:anbi12d |- ( x = ( u i^i z ) → ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) 235:234:ax-gen |- A. x ( x = ( u i^i z ) → ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) 236:226,235:pm3.2i |- ( ( u i^i z ) e. V /\ A. x ( x = ( u i^i z ) → ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) ) 237::elabt |- ( ( ( u i^i z ) e. V /\ A. x ( x = ( u i^i z ) → ( ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) <→ ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) ) → ( ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) 238:236,237:ax-mp |- ( ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } <→ ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) 239:224,238:imbi12i |- ( ( ( u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } /\ z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) → ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) <→ ( ( ( u (_ A /\ ( E. n e. om ( A \ u ) ~~ n \/ u = (/) ) ) /\ ( z (_ A /\ ( E. n e. om ( A \ z ) ~~ n \/ z = (/) ) ) ) → ( ( u i^i z ) (_ A /\ ( E. n e. om ( A \ ( u i^i z ) ) ~~ n \/ ( u i^i z ) = (/) ) ) ) ) 240:167,239:mpbir |- ( ( u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } /\ z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) → ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) 241:240:rgen2 |- A. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } A. z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } 242:88,241:pm3.2i |- ( A. u ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → U. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) /\ A. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } A. z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) 243::abssexg |- ( A e. V → { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } e. V ) 244:1,243:ax-mp |- { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } e. V 245::istopg |- ( { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } e. V → ( { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } e. Top <→ ( A. u ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → U. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) /\ A. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } A. z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) ) ) 246:244,245:ax-mp |- ( { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } e. Top <→ ( A. u ( u (_ { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } → U. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) /\ A. u e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } A. z e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ( u i^i z ) e. { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } ) ) qed:242,246:mpbir |- { x | ( x (_ A /\ ( E. n e. om ( A \ x ) ~~ n \/ x = (/) ) ) } e. Top
$)