QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  df-b Structured version   Unicode version

Definition df-b 39
Description: Define biconditional.
Assertion
Ref Expression
df-b (a == b) = ((a' v b')' v (a v b)')

Detailed syntax breakdown of Definition df-b
StepHypRef Expression
1 wva . . 3 term a
2 wvb . . 3 term b
31, 2tb 5 . 2 term (a == b)
41wn 4 . . . . 5 term a'
52wn 4 . . . . 5 term b'
64, 5wo 6 . . . 4 term (a' v b')
76wn 4 . . 3 term (a' v b')'
81, 2wo 6 . . . 4 term (a v b)
98wn 4 . . 3 term (a v b)'
107, 9wo 6 . 2 term ((a' v b')' v (a v b)')
113, 10wb 1 1 wff (a == b) = ((a' v b')' v (a v b)')
Colors of variables: term
This definition is referenced by:  dfb  94  wa6  196  r3a  440
  Copyright terms: Public domain W3C validator