QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oa4to6lem2 Unicode version

Theorem oa4to6lem2 961
Description: Lemma for orthoarguesian law (4-variable to 6-variable proof).
Hypotheses
Ref Expression
oa4to6lem.1 a' =< b
oa4to6lem.2 c' =< d
oa4to6lem.3 e' =< f
oa4to6lem.4 g = (((a ^ b) v (c ^ d)) v (e ^ f))
Assertion
Ref Expression
oa4to6lem2 d =< (c ->1 g)

Proof of Theorem oa4to6lem2
StepHypRef Expression
1 leor 159 . . . 4 d =< (c' v d)
2 comid 187 . . . . . . . . 9 c C c
32comcom3 454 . . . . . . . 8 c' C c
4 oa4to6lem.2 . . . . . . . . 9 c' =< d
54lecom 180 . . . . . . . 8 c' C d
63, 5fh3 471 . . . . . . 7 (c' v (c ^ d)) = ((c' v c) ^ (c' v d))
7 ancom 74 . . . . . . . 8 (1 ^ (c' v d)) = ((c' v d) ^ 1)
8 df-t 41 . . . . . . . . . 10 1 = (c v c')
9 ax-a2 31 . . . . . . . . . 10 (c v c') = (c' v c)
108, 9ax-r2 36 . . . . . . . . 9 1 = (c' v c)
1110ran 78 . . . . . . . 8 (1 ^ (c' v d)) = ((c' v c) ^ (c' v d))
12 an1 106 . . . . . . . 8 ((c' v d) ^ 1) = (c' v d)
137, 11, 123tr2 64 . . . . . . 7 ((c' v c) ^ (c' v d)) = (c' v d)
146, 13ax-r2 36 . . . . . 6 (c' v (c ^ d)) = (c' v d)
1514ax-r1 35 . . . . 5 (c' v d) = (c' v (c ^ d))
16 anidm 111 . . . . . . . . 9 (c ^ c) = c
1716ran 78 . . . . . . . 8 ((c ^ c) ^ d) = (c ^ d)
1817ax-r1 35 . . . . . . 7 (c ^ d) = ((c ^ c) ^ d)
19 anass 76 . . . . . . 7 ((c ^ c) ^ d) = (c ^ (c ^ d))
2018, 19ax-r2 36 . . . . . 6 (c ^ d) = (c ^ (c ^ d))
2120lor 70 . . . . 5 (c' v (c ^ d)) = (c' v (c ^ (c ^ d)))
2215, 21ax-r2 36 . . . 4 (c' v d) = (c' v (c ^ (c ^ d)))
231, 22lbtr 139 . . 3 d =< (c' v (c ^ (c ^ d)))
24 leor 159 . . . . . 6 (c ^ d) =< (((a ^ b) v (e ^ f)) v (c ^ d))
25 or32 82 . . . . . 6 (((a ^ b) v (e ^ f)) v (c ^ d)) = (((a ^ b) v (c ^ d)) v (e ^ f))
2624, 25lbtr 139 . . . . 5 (c ^ d) =< (((a ^ b) v (c ^ d)) v (e ^ f))
2726lelan 167 . . . 4 (c ^ (c ^ d)) =< (c ^ (((a ^ b) v (c ^ d)) v (e ^ f)))
2827lelor 166 . . 3 (c' v (c ^ (c ^ d))) =< (c' v (c ^ (((a ^ b) v (c ^ d)) v (e ^ f))))
2923, 28letr 137 . 2 d =< (c' v (c ^ (((a ^ b) v (c ^ d)) v (e ^ f))))
30 oa4to6lem.4 . . . . 5 g = (((a ^ b) v (c ^ d)) v (e ^ f))
3130ud1lem0a 255 . . . 4 (c ->1 g) = (c ->1 (((a ^ b) v (c ^ d)) v (e ^ f)))
32 df-i1 44 . . . 4 (c ->1 (((a ^ b) v (c ^ d)) v (e ^ f))) = (c' v (c ^ (((a ^ b) v (c ^ d)) v (e ^ f))))
3331, 32ax-r2 36 . . 3 (c ->1 g) = (c' v (c ^ (((a ^ b) v (c ^ d)) v (e ^ f))))
3433ax-r1 35 . 2 (c' v (c ^ (((a ^ b) v (c ^ d)) v (e ^ f)))) = (c ->1 g)
3529, 34lbtr 139 1 d =< (c ->1 g)
Colors of variables: term
Syntax hints:   = wb 1   =< wle 2  'wn 4   v wo 6   ^ wa 7  1wt 8   ->1 wi1 12
This theorem is referenced by:  oa4to6lem4  963
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133
  Copyright terms: Public domain W3C validator