Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  oml6 Unicode version

Theorem oml6 488
 Description: Orthomodular law.
Assertion
Ref Expression
oml6

Proof of Theorem oml6
StepHypRef Expression
1 comor1 461 . . . 4
21comcom7 460 . . 3
3 comor2 462 . . . 4
43comcom7 460 . . 3
52, 4fh4c 478 . 2
6 df-t 41 . . . . . 6
76ax-r5 38 . . . . 5
8 ax-a2 31 . . . . . 6
9 or1 104 . . . . . 6
108, 9ax-r2 36 . . . . 5
11 ax-a3 32 . . . . 5
127, 10, 113tr2 64 . . . 4
1312ax-r1 35 . . 3
1413lan 77 . 2
15 an1 106 . 2
165, 14, 153tr 65 1
 Colors of variables: term Syntax hints:   wb 1  wn 4   wo 6   wa 7  wt 8 This theorem is referenced by:  sa5  836 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
 Copyright terms: Public domain W3C validator