QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ska14 Unicode version

Theorem ska14 514
Description: Soundness proof for KA14.
Assertion
Ref Expression
ska14 ((a' v b) ->3 (a ->3 (a ->3 b))) = 1

Proof of Theorem ska14
StepHypRef Expression
1 lem4 511 . . . 4 (a ->3 (a ->3 b)) = (a' v b)
21ax-r1 35 . . 3 (a' v b) = (a ->3 (a ->3 b))
32ri3 253 . 2 ((a' v b) ->3 (a ->3 (a ->3 b))) = ((a ->3 (a ->3 b)) ->3 (a ->3 (a ->3 b)))
4 i3id 251 . 2 ((a ->3 (a ->3 b)) ->3 (a ->3 (a ->3 b))) = 1
53, 4ax-r2 36 1 ((a' v b) ->3 (a ->3 (a ->3 b))) = 1
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   v wo 6  1wt 8   ->3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
  Copyright terms: Public domain W3C validator