QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ska15 Unicode version

Theorem ska15 244
Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KA15.
Assertion
Ref Expression
ska15 ((a ->3 b)' v (a' v b)) = 1

Proof of Theorem ska15
StepHypRef Expression
1 df-i3 46 . . 3 (a ->3 b) = (((a' ^ b) v (a' ^ b')) v (a ^ (a' v b)))
2 ax-a2 31 . . . . . 6 ((a' ^ b) v (a' ^ b')) = ((a' ^ b') v (a' ^ b))
3 lea 160 . . . . . . 7 (a' ^ b') =< a'
4 lear 161 . . . . . . 7 (a' ^ b) =< b
53, 4le2or 168 . . . . . 6 ((a' ^ b') v (a' ^ b)) =< (a' v b)
62, 5bltr 138 . . . . 5 ((a' ^ b) v (a' ^ b')) =< (a' v b)
7 lear 161 . . . . 5 (a ^ (a' v b)) =< (a' v b)
86, 7le2or 168 . . . 4 (((a' ^ b) v (a' ^ b')) v (a ^ (a' v b))) =< ((a' v b) v (a' v b))
9 oridm 110 . . . 4 ((a' v b) v (a' v b)) = (a' v b)
108, 9lbtr 139 . . 3 (((a' ^ b) v (a' ^ b')) v (a ^ (a' v b))) =< (a' v b)
111, 10bltr 138 . 2 (a ->3 b) =< (a' v b)
1211sklem 230 1 ((a ->3 b)' v (a' v b)) = 1
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   v wo 6   ^ wa 7  1wt 8   ->3 wi3 14
This theorem is referenced by:  skmp3  245  mccune3  248
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i3 46  df-le1 130  df-le2 131
  Copyright terms: Public domain W3C validator