QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ud2 Unicode version

Theorem ud2 596
Description: Unified disjunction for Dishkant implication.
Assertion
Ref Expression
ud2 (a v b) = ((a ->2 b) ->2 (((a ->2 b) ->2 (b ->2 a)) ->2 a))

Proof of Theorem ud2
StepHypRef Expression
1 ud2lem1 563 . . . . . 6 ((a ->2 b) ->2 (b ->2 a)) = (a v (a' ^ b'))
21ud2lem0b 259 . . . . 5 (((a ->2 b) ->2 (b ->2 a)) ->2 a) = ((a v (a' ^ b')) ->2 a)
3 ud2lem2 564 . . . . 5 ((a v (a' ^ b')) ->2 a) = (a v b)
42, 3ax-r2 36 . . . 4 (((a ->2 b) ->2 (b ->2 a)) ->2 a) = (a v b)
54ud2lem0a 258 . . 3 ((a ->2 b) ->2 (((a ->2 b) ->2 (b ->2 a)) ->2 a)) = ((a ->2 b) ->2 (a v b))
6 ud2lem3 565 . . 3 ((a ->2 b) ->2 (a v b)) = (a v b)
75, 6ax-r2 36 . 2 ((a ->2 b) ->2 (((a ->2 b) ->2 (b ->2 a)) ->2 a)) = (a v b)
87ax-r1 35 1 (a v b) = ((a ->2 b) ->2 (((a ->2 b) ->2 (b ->2 a)) ->2 a))
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   v wo 6   ^ wa 7   ->2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i2 45  df-le1 130  df-le2 131  df-c1 132  df-c2 133
  Copyright terms: Public domain W3C validator