[Lattice L46-7]Home PageHome Quantum Logic Explorer < Previous   Next >
Related theorems
Unicode version

Theorem wa3 193
Description: Weak A3.
Assertion
Ref Expression
wa3 (((a v b) v c) == (a v (b v c))) = 1

Proof of Theorem wa3
StepHypRef Expression
1 ax-a3 32 . 2 ((a v b) v c) = (a v (b v c))
21bi1 118 1 (((a v b) v c) == (a v (b v c))) = 1
Colors of variables: term
Syntax hints:   = wb 1   == tb 5   v wo 6  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
Copyright terms: Public domain