QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wlor Unicode version

Theorem wlor 368
Description: Weak orthomodular law.
Hypothesis
Ref Expression
wlor.1 (a == b) = 1
Assertion
Ref Expression
wlor ((c v a) == (c v b)) = 1

Proof of Theorem wlor
StepHypRef Expression
1 ax-a2 31 . . 3 (c v a) = (a v c)
2 ax-a2 31 . . 3 (c v b) = (b v c)
31, 22bi 99 . 2 ((c v a) == (c v b)) = ((a v c) == (b v c))
4 wlor.1 . . 3 (a == b) = 1
54wr5-2v 366 . 2 ((a v c) == (b v c)) = 1
63, 5ax-r2 36 1 ((c v a) == (c v b)) = 1
Colors of variables: term
Syntax hints:   = wb 1   == tb 5   v wo 6  1wt 8
This theorem is referenced by:  wr2  371  w2or  372  wleao  377  wom4  380  wom5  381  wcomlem  382  wcom3i  422  wfh3  425  wfh4  426  wlem14  430  ska2  432  ska4  433
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le1 130  df-le2 131
  Copyright terms: Public domain W3C validator