QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  woml Unicode version

Theorem woml 211
Description: Theorem structurally similar to orthomodular law but does not require R3.
Assertion
Ref Expression
woml ((a v (a' ^ (a v b))) == (a v b)) = 1

Proof of Theorem woml
StepHypRef Expression
1 omlem1 127 . 2 ((a v (a' ^ (a v b))) v (a v b)) = (a v b)
2 omlem2 128 . 2 ((a v b)' v (a v (a' ^ (a v b)))) = 1
31, 2wlem3.1 210 1 ((a v (a' ^ (a v b))) == (a v b)) = 1
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   == tb 5   v wo 6   ^ wa 7  1wt 8
This theorem is referenced by:  wwoml2  212  ska11  239  wom4  380
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
  Copyright terms: Public domain W3C validator