QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wr5 Unicode version

Theorem wr5 431
Description: Proof of weak orthomodular law from weaker-looking equivalent, wom3 367, which in turn is derived from ax-wom 361.
Hypothesis
Ref Expression
wr5.1 (a == b) = 1
Assertion
Ref Expression
wr5 ((a v c) == (b v c)) = 1

Proof of Theorem wr5
StepHypRef Expression
1 wr5.1 . 2 (a == b) = 1
21wr5-2v 366 1 ((a v c) == (b v c)) = 1
Colors of variables: term
Syntax hints:   = wb 1   == tb 5   v wo 6  1wt 8
This theorem is referenced by:  wdka4o  1114
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le1 130  df-le2 131
  Copyright terms: Public domain W3C validator