 Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  dp53 GIF version

Theorem dp53 1168
 Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (5)=>(3)
Hypotheses
Ref Expression
dp53.1 c0 = ((a1a2) ∩ (b1b2))
dp53.2 c1 = ((a0a2) ∩ (b0b2))
dp53.3 c2 = ((a0a1) ∩ (b0b1))
dp53.4 p = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
Assertion
Ref Expression
dp53 p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0c1)))))

Proof of Theorem dp53
StepHypRef Expression
1 dp53.1 . 2 c0 = ((a1a2) ∩ (b1b2))
2 dp53.2 . 2 c1 = ((a0a2) ∩ (b0b2))
3 dp53.3 . 2 c2 = ((a0a1) ∩ (b0b1))
4 id 59 . 2 ((a1b1) ∩ (a2b2)) = ((a1b1) ∩ (a2b2))
5 dp53.4 . 2 p = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
61, 2, 3, 4, 5dp53lemg 1167 1 p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0c1)))))
 Colors of variables: term Syntax hints:   = wb 1   ≤ wle 2   ∪ wo 6   ∩ wa 7 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120  ax-arg 1151 This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131 This theorem is referenced by:  dp35lemg  1169  dp34  1179  dp32  1194  oadp35lemg  1207
 Copyright terms: Public domain W3C validator