Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  le1 GIF version

Theorem le1 146
 Description: Anything is l.e. 1.
Assertion
Ref Expression
le1 a ≤ 1

Proof of Theorem le1
StepHypRef Expression
1 or1 104 . 2 (a ∪ 1) = 1
21df-le1 130 1 a ≤ 1
 Colors of variables: term Syntax hints:   ≤ wle 2  1wt 8 This theorem was proved from axioms:  ax-a2 31  ax-a4 33  ax-r1 35  ax-r2 36  ax-r5 38 This theorem depends on definitions:  df-t 41  df-le1 130 This theorem is referenced by:  ka4lemo  228  wlem1  243  bina5  286  wql1lem  287  wql2lem  288  womle2a  295  womle2b  296  womle3b  297  nom23  316  2vwomlem  365  wr5-2v  366  wom3  367  wdf-c2  384  ska2  432  ska4  433  wom2  434  ka4ot  435  cmtr1com  493  i3or  497  u3lemax4  796  u3lemax5  797  3vded11  814  3vded12  815  3vroa  831  oa3-2to4  988  oa3-u1  991  oa3-u2  992  lem3.3.5lem  1054  lem4.6.7  1101  wdwom  1104  dp15lema  1152  xdp15  1197  xxdp15  1200  xdp45lem  1202  xdp43lem  1203  xdp45  1204  xdp43  1205  3dp43  1206
 Copyright terms: Public domain W3C validator