Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  negantlem1 GIF version

Theorem negantlem1 848
 Description: Lemma for negated antecedent identity.
Hypothesis
Ref Expression
negant.1 (a1 c) = (b1 c)
Assertion
Ref Expression
negantlem1 a C (b1 c)

Proof of Theorem negantlem1
StepHypRef Expression
1 leo 158 . . . 4 a ≤ (a ∪ (ac))
2 df-i1 44 . . . . . 6 (a1 c) = (a ∪ (ac))
32ax-r1 35 . . . . 5 (a ∪ (ac)) = (a1 c)
4 negant.1 . . . . 5 (a1 c) = (b1 c)
53, 4ax-r2 36 . . . 4 (a ∪ (ac)) = (b1 c)
61, 5lbtr 139 . . 3 a ≤ (b1 c)
76lecom 180 . 2 a C (b1 c)
87comcom6 459 1 a C (b1 c)
 Colors of variables: term Syntax hints:   = wb 1   C wc 3  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →1 wi1 12 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131  df-c1 132  df-c2 133 This theorem is referenced by:  negantlem2  849
 Copyright terms: Public domain W3C validator