 Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcomcom3 GIF version

Theorem wcomcom3 416
 Description: Commutation equivalence. Kalmbach 83 p. 23.
Hypothesis
Ref Expression
wcomcom.1 C (a, b) = 1
Assertion
Ref Expression
wcomcom3 C (a , b) = 1

Proof of Theorem wcomcom3
StepHypRef Expression
1 wcomcom.1 . . . 4 C (a, b) = 1
21wcomcom 414 . . 3 C (b, a) = 1
32wcomcom2 415 . 2 C (b, a ) = 1
43wcomcom 414 1 C (a , b) = 1
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4  1wt 8   C wcmtr 29 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-cmtr 134 This theorem is referenced by:  wcomcom4  417  wfh2  424  wcom2or  427  wlem14  430  ska2  432  woml6  436  woml7  437
 Copyright terms: Public domain W3C validator