Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  wlbtr GIF version

Theorem wlbtr 398
 Description: Transitive inference.
Hypotheses
Ref Expression
wlbtr.1 (a2 b) = 1
wlbtr.2 (bc) = 1
Assertion
Ref Expression
wlbtr (a2 c) = 1

Proof of Theorem wlbtr
StepHypRef Expression
1 wlbtr.2 . . . . 5 (bc) = 1
21wr1 197 . . . 4 (cb) = 1
32wlan 370 . . 3 ((ac) ≡ (ab)) = 1
4 wlbtr.1 . . . 4 (a2 b) = 1
54wdf2le2 386 . . 3 ((ab) ≡ a) = 1
63, 5wr2 371 . 2 ((ac) ≡ a) = 1
76wdf2le1 385 1 (a2 c) = 1
 Colors of variables: term Syntax hints:   = wb 1   ≡ tb 5   ∩ wa 7  1wt 8   ≤2 wle2 10 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131 This theorem is referenced by:  wle3tr1  399  wledi  405  wledio  406  ska4  433
 Copyright terms: Public domain W3C validator