 Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  wler GIF version

Theorem wler 391
 Description: Add disjunct to right of l.e.
Hypothesis
Ref Expression
wle.1 (a2 b) = 1
Assertion
Ref Expression
wler (a2 (bc)) = 1

Proof of Theorem wler
StepHypRef Expression
1 df-le 129 . 2 (a2 (bc)) = ((a ∪ (bc)) ≡ (bc))
2 ax-a3 32 . . . . 5 ((ab) ∪ c) = (a ∪ (bc))
32ax-r1 35 . . . 4 (a ∪ (bc)) = ((ab) ∪ c)
43rbi 98 . . 3 ((a ∪ (bc)) ≡ (bc)) = (((ab) ∪ c) ≡ (bc))
5 df-le 129 . . . . . 6 (a2 b) = ((ab) ≡ b)
65ax-r1 35 . . . . 5 ((ab) ≡ b) = (a2 b)
7 wle.1 . . . . 5 (a2 b) = 1
86, 7ax-r2 36 . . . 4 ((ab) ≡ b) = 1
98wr5-2v 366 . . 3 (((ab) ∪ c) ≡ (bc)) = 1
104, 9ax-r2 36 . 2 ((a ∪ (bc)) ≡ (bc)) = 1
111, 10ax-r2 36 1 (a2 (bc)) = 1
 Colors of variables: term Syntax hints:   = wb 1   ≡ tb 5   ∪ wo 6  1wt 8   ≤2 wle2 10 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator