
A Finitely Axiomatized Formalization of
Predicate Calculus with Equality

Note: This is a preprint of Megill, “A Finitely Axiomatized Formalization of
Predicate Calculus with Equality,” Notre Dame Journal of Formal Logic,

36:435-453, 1995.

The paper as published has the following errata that have been corrected in
this preprint.

� On p. 439, line 7, “(Condensed detachment)” should be followed by a
reference to a footnote, “The arrays start at index i = 1. In Step 3, i is
increased before each comparison is made.”

� On p. 446, line 17, “unnecessary” is misspelled.

� On p. 448, 2nd line from bottom, “that in Section 8.” should be followed
by “In addition, S3′ has the following stronger property.”

� On p. 449, line 22, “ui” should be “u1”.

� On p. 450, line 27, “Dpq” should be “Dqp”.

� On p. 451, line 2, “shorter proof string” should be followed by a reference
to a footnote, “Found by the Otter theorem prover [?].”

In August 2017, Tony Häger identified and provided the proofs for two miss-
ing lemmas needed for the Substitution Theorem proof, and also found some
shorter proofs for other lemmas. The necessary corrections have not yet been
incorporated in this preprint but can be found in the discussion starting at
https://groups.google.com/d/msg/metamath/t2G8X-dvTbA/Tqfxeo1sAwAJ

A Finitely Axiomatized Formalization of

Predicate Calculus with Equality

July 7, 1995

Abstract

We present a formalization of first-order predicate calculus with equality which,
unlike traditional systems with axiom schemata or substitution rules, is finitely
axiomatized in the sense that each step in a formal proof admits only finitely
many choices. This formalization is primarily based on the inference rule of
condensed detachment of C. A. Meredith. The usual primitive notions of free
variable and proper substitution are absent, making it easy to verify proofs in a
machine-oriented application. Completeness results are presented. The example
of Zermelo-Fraenkel set theory is shown to be finitely axiomatized under the
formalization. The relationship with resolution-based theorem provers is briefly
discussed. A closely related axiomatization of traditional predicate calculus is
shown to be complete in a strong metamathematical sense.

1 Introduction

We define a formal theory to be finitely axiomatized if each step of a formal proof
in the theory admits only finitely many choices. This definition implies that the
underlying logic is finitely axiomatized; it is stricter than the usual definition
which requires only that the number of nonlogical axioms of the theory be finite.

Traditional axiom systems of first-order predicate calculus are usually pre-
sented with axiom schemata each of which represents infinitely many axioms
(e.g. [?, p. 73]). Throughout this paper we assume familiarity with such a
system and refer to it as traditional predicate calculus. Church [?, pp. 218–
219] presents a formalization of predicate calculus with a finite number of ax-
ioms together with substitution rules. However, a substitution rule is really a
rule schema admitting an infinite number of choices, so Church’s system is not
finitely axiomatized in our terminology.

The finiteness of the number of nonlogical axioms in a theory is often con-
sidered philosophically or aesthetically desirable, as in, for example, NBG (von

1

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 2

Neumann-Bernays-Gödel) set theory [?, pp. 173–219]. However, the underlying
logic usually tends to be viewed only in terms of schemata of infinite axioms.
Kleene [?, p. 140] writes that whether we set up propositional calculus with
axiom schemata or with particular axioms and a substitution rule, “the rules of
inference must have the character of schemata, i.e. they must employ metamath-
ematical variables, since infinitely many applications have to be provided for.”
Tarksi and Givant [?, p. 7], state that “[the] set of logical axioms is necessarily
infinite” in a formalization of predicate calculus.

We shall describe a new formalization of predicate calculus with equality
that is finitely axiomatized when the number of nonlogical symbols in the lan-
guage is finite. Finite axiomatization is achieved by treating what are ordinarily
thought of as metavariables as the primitive variables of the system and pro-
viding inference rules to manipulate these directly. We then show how to map
a subset of the resulting “metatheorems” directly into the theorems of tradi-
tional predicate calculus and show that this mapping is complete. (However,
not all formulas of our system that are true when interpreted as metatheorems
are provable; see Remark 2 in Section ??.)

Our formalization uses C. A. Meredith’s inference rule of condensed detach-
ment (Rule D) [?] in place of modus ponens and substitution. Any axiom system
with Rule D as its rule of inference is finitely axiomatized in our sense because
at any point in a proof there are only finitely many earlier steps to which Rule
D can be applied, and the outcome of Rule D is unique (up to renaming vari-
ables). However the underlying axiom system has to have a certain minimum
strength in order for the system to be complete, in the sense of being able to
prove all possible substitution instances of theorems. Some properties sufficient
to achieve this D-completeness for weak implicational systems are discussed in
[?] and [?].

The remaining remarks in this section assume the reader is familiar with
resolution and related techniques in the field of automated reasoning.

An inference rule related to Rule D is the resolution principle of J. A. Robin-
son [?], commonly used in automated theorem proving. A deductive system of
logic whose inference rules are resolution together with the related rules of fac-
toring and paramodulation can be considered finitely axiomatized in our sense
and can produce clauses (theorems) that correspond to Skolemizations of theo-
rems of predicate calculus with equality. But such a system is not “deduction
complete” so that, for example, Gödel’s completeness theorem fails to hold [?].

However, it is possible to use resolution with our system S1 below to achieve
deduction completeness in an indirect way. Kalman [?] showed that Rule D can
be subsumed within resolution by treating formulas of logic as terms and intro-
ducing a provability predicate, a method now often used (in refutation systems)
to find proofs in fragments of propositional calculus [?, pp. 355 and 480–482].
This method represents Rule D with the clause −P (x)|−P (i(x, y))|P (y) where
P is the provability predicate and i represents the binary connective→ in system

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 3

S1. The other inference rule we will need for system S1, condensed generaliza-
tion, also can be subsumed within resolution with the clause −P (x)|P (a(y, x))
where a represents the binary connective ∀ in system S1. Because resolution-
style inferences preserve the positions of arguments, individual and propositional
variables will not mix and thus will not allow us to prove ill-formed formulas.

Resolution-based theorem provers typically have other inference rules involv-
ing substitution, and we must ensure that these also will not mix variables in
the presence of a candidate theorem that qualifies as a wff (as defined below).
If we are uncertain about the substitution rules used by a theorem prover, we
can restore confidence in its output by verifying that each step of the gener-
ated proof is a wff. Roughly, any resolution-based prover suitable for assisting
D-completeness proofs (e.g. [?]) is sound for system S1. However a brief exper-
iment showed that the theorem prover described in [?], which is not suitable in
this sense, did correctly prove general cases of our lemmas L1–L22 whenever it
was able (on a small computer) to find a proof (from which the exact lemmas
follow by the Substitution Theorem below).

2 The System S1

To simplify our notation, we shall restrict our study to a subset of predicate cal-
culus that has equality, one additional binary predicate symbol, and no function
or constant symbols. This subset suffices for set theory, and the choice of the
symbol ∈ for the additional binary predicate is not accidental, but the axioms
apply to any binary predicate. It is possible to add an arbitrary finite number of
n-place predicate symbols to the system in a straightforward fashion and, using
methods described in [?, pp. 405–420], to add constants and function symbols
by means of definitions.

We now describe S1, the main system of our discourse. The undefined sym-
bols of S1 are represented by an infinite number of variables in sequence a, b,
c,. . . ; a unary connective ¬; and binary connectives →, ∀, =, ∈. A formula is a
string of these symbols. The axioms of S1 are the following formulas.

→ a→ ba(A1)

→→ a→ bc→→ ab→ ac(A2)

→→ ¬a¬b→ ba(A3)

→ ∀a→ ∀abc→ ∀ab∀ac(A4)

→ ∀abb(A5)

→ ∀a∀bc∀b∀ac(A6)

→ ¬a∀b¬∀ba(A7)

→= ab→= ac = bc(A8)

→ ¬∀a = ab→ ¬∀a = ac→= bc∀a = bc(A9)

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 4

→ ∀a→= ab∀acc(A10)

→ ∀a = ab→ ∀ac∀bc(A11)

→= ab→∈ ac ∈ bc(A12)

→= ab→∈ ca ∈ cb(A13)

→ ¬∀a = ab→ ¬∀a = ac→∈ bc∀a ∈ bc(A14)

The inference rules of S1 are condensed detachment (Rule D) and condensed
generalization (Rule G). They are analogous to modus ponens and generaliza-
tion in traditional predicate calculus, but we shall defer their precise definition
until the next section.

Unless otherwise stated, we shall use F , G, and H (possibly with subscripts)
as metavariables ranging over formulas, and u and v as metavariables ranging
over variables.

To facilitate the description of the rules of S1, we have displayed its axioms
in Polish prefix notation, in which a variable is an atomic primitive formula,
and if F and G are primitive formulas, so are ¬F , → FG, ∀FG, = FG, and
∈ FG.

A proof in S1 is a finite sequence of theorems, each of which is an axiom, the
result of Rule D applied to two previous theorems in the sequence (if the result
exists), or the result of Rule G applied to a previous theorem in the sequence.
The result of a proof is the last theorem in the sequence. A D-derivation is a
proof from a finite number of axioms that uses D and G as the only rules; thus
all proofs in system S1 are D-derivations.

To avoid ambiguity, we shall sometimes call an arbitrary variable of system
S1 a primitive variable. We define an individual variable as a (primitive) variable
that occurs as the first argument of a ∀ connective or as either argument of an
= or ∈ connective. A variable in any other position is defined as a propositional
variable.

We define an atomic well-formed formula (wff) as either a (propositional)
variable or a primitive formula of the form = uv or ∈ uv; and if F and G are
wffs, so are ¬F , → FG, and ∀uF , provided that no variable becomes both a
propositional variable and an individual variable. It may be observed that each
axiom of S1 is a wff.

The variables in a formula are normalized if they occur in alphabetic order
a, b, c,. . . by first appearance. The axioms and rules of S1 are such that all
theorems have normalized variables.

The connectives = and ∈ are predicate symbols. The connectives ¬, →, and
∀ are logical connectives. The predicate symbol ∈ is a nonlogical symbol.

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 5

3 The Rules D and G

The rule of condensed detachment, which we shall call Rule D, was introduced
by C. A. Meredith [?] as a method for abbreviating proofs in propositional
calculus. In traditional propositional calculus, the result of applying modus
ponens (with some appropriate substitutions), if it can be applied, to theorems
of the form → FG and H is an infinite set of substitution instances of G. From
this set Rule D picks a theorem that is most general in the sense that all other
theorems in the set are substitution instances of it. To make it unique, the most
general theorem that is picked is the one with its variables normalized according
to some convention. We denote this most general theorem by D(→ FG,H) and
say that it is the result of detaching H from → FG. Rigorous treatments of
Rule D are provided in [?] and [?], and an informal tutorial is presented in [?,
pp. 2–6]. A specific example is given in the Appendix of this paper.

We extend the use of Rule D to system S1, treating all connectives as if they
were propositional connectives. It is important to note that in system S1, unlike
propositional calculus, the general substitution of a variable with a wff is not a
defined or derived rule, nor will such a substitution necessarily result in a valid
theorem. We shall show later that when operating on the axioms of S1, Rule
D will perform only acceptable substitutions and, less obviously, can perform
all possible acceptable substitutions. This is the essential feature that allows
the predicate calculus to be complete yet still finitely axiomatized, because each
application of Rule D (or Rule G) results in a unique theorem. The nature of
Rule D is such that when it is applied to two wffs, the result, if it exists, is a
wff; in particular, Rule D will never mix individual and propositional variables.

The following algorithm from Peterson [?], with the addition of step 10,
generates D(→ FG,H) or shows that it does not exist. A subformula is the
shortest sequence of symbols that begins at an indicated point in a formula and
satisfies the definition of a primitive formula. F is the subformula beginning at
the second symbol in → FG. To find D(→ FG,H), we represent formulas F ,
G, and H as strings of nonzero integers stored left-justified in arrays A, B, and
C such that (for example) the variables are represented by positive integers and
the connectives by negative integers. A zero represents the end of a string.

Algorithm D (Condensed detachment)1 Step 1. Renumber the variables
in C so that it has no variables in common with A and B. Step 2. Set i to
0. Step 3. Increase i by 1 until A[i] 6= C[i] or C[i] = 0. Step 4. If C[i] = 0
then go to 10. Otherwise continue. Step 5. If C[i] is a variable then set m
to C[i] and place the subformula beginning with A[i] in array E. Go to 8.
Otherwise continue. Step 6. If A[i] is a variable then set m to A[i] and place
the subformula beginning with C[i] in array E. Go to 8. Otherwise continue.
Step 7. Terminate the algorithm. D(→ FG,H) does not exist. Step 8. If
m occurs in array E then go to 7. Otherwise continue. Step 9. Substitute the

1The arrays start at index i = 1. In Step 3, i is increased before each comparison is made.

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 6

content of array E for each occurrence of m throughout arrays A, B, and C. Go
to 3. Step 10. (Normalization) Renumber the variables in B so that they occur,
by first appearance, in alphabetic order a, b, c,. . . . Terminate the algorithm.
The content of array B is D(→ FG,H).

Condensed generalization or Rule G quantifies a theorem F with a variable
not appearing in the theorem and normalizes the result. The following algorithm
performs this rule.

Algorithm G (Condensed generalization) Step 1. Change each variable
in F to the next variable in the language’s list of variables, so that a becomes
b, b becomes c, etc. Step 2. Preface F with “∀a”. Terminate the algorithm.

4 The System S2

We next define S2, an axiomatization that represents an intermediate step be-
tween S1 and traditional predicate calculus. We shall later show that S1 and
S2 are equivalent.

S1 and S2 differ only in their rules. Except for notation, the axioms of system
S2 are the same as those of S1. The individual and propositional variables of S1
are replaced with distinguished groups of symbols and the notation is changed
from Polish prefix to a more conventional one. Implicitly, each theorem of S2
is a metamathematical representation of a theorem in the normalized notation
of S1, even though the axioms of S2 do not explicitly exhibit nor the rules
explicitly require variable normalization. We allow the theorems of S2 to contain
unnormalized variables only as a metamathematical convenience. Henceforth,
we shall restrict the metavariables u and v to range over individual variables
(and not propositional variables) unless otherwise stated.

The symbols of S2 are represented by propositional variables P , Q, R, S,. . . ;
individual variables x, y, z,. . . ; unary connective ¬; binary connectives →, ∀,
=, ∈; and parentheses (,).

In system S2, an atomic wff is either a propositional variable or an expression
of the form u = v or u ∈ v; and if F and G are wffs, so are ¬F , (F → G), and
∀uF . For readability we omit the outermost parentheses when writing formulas.
The axioms of S2 follow, separated into related groups:

(Axioms for propositional calculus)

P → (Q→ P)(B1)

(P → (Q→ R))→ ((P → Q)→ (P → R))(B2)

(¬P → ¬Q)→ (Q→ P)(B3)

(Axioms for pure predicate calculus)

∀x(∀xP → Q)→ (∀xP → ∀xQ)(B4)

∀xP → P(B5)

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 7

∀x∀yP → ∀y∀xP(B6)

¬P → ∀x¬∀xP(B7)

(Axioms for equality and substitution)

x = y → (x = z → y = z)(B8)

¬∀xx = y → (¬∀xx = z → (y = z → ∀xy = z))(B9)

∀x(x = y → ∀xP)→ P(B10)

∀xx = y → (∀xP → ∀yP)(B11)

(Axioms for a binary predicate)

x = y → (x ∈ z → y ∈ z)(B12)

x = y → (z ∈ x→ z ∈ y)(B13)

¬∀xx = y → (¬∀xx = z → (y ∈ z → ∀xy ∈ z))(B14)

The inference rules of system S2 are the following. (1) Modus ponens: From
F and F → G, infer G. (2) Generalization: From F , if u is any individual
variable, infer ∀uF . (3) Substitution for propositional variables: From F , infer a
new formula obtained by replacing all occurrences of some propositional variable
in F with any wff. (4) Substitution for individual variables: From F , infer a
new formula obtained by replacing all occurrences of some individual variable
in F with any other individual variable.

In the modus ponens inference, F is called the minor premise and F → G
the major premise. In the major premise, F is called the antecedent and G the
consequent. We say that F is detached from F → G to result in G (although
usually we shall use the word “detach” in the sense of condensed detachment
defined above). We may use the term “antecedent” somewhat informally; for
example in F → (G→ H), F and G may both be called antecedents.

It will be convenient to have available other logical connectives defined in
terms of the primitive connectives; we define F ∨G (disjunction), F ∧G (con-
junction), F ↔ G, and ∃uF as abbreviations for ¬F → G, ¬(F → ¬G),
¬((F → G)→ ¬(G→ F)), and ¬∀u¬F respectively.

Unlike S1, S2 is not finitely axiomatized because of its substitution rules.
However, S2 is interesting in its own right because the axioms have no verbal
restrictions on variables, i.e. there are no primitive notions of free, bound, or
distinct individual variables, nor are there complex rules for proper substitu-
tions. This property is essential for compatibility with Rule D of S1, but as a
side benefit the inherent simplicity of S2 can make it easy to study as a formal
system.

Because the wffs of S2 are the same as those of S1 except for notation, we
shall usually represent wffs of S1 in the more standard notation of S2. We
shall also interchangeably refer to axioms A1 through A14 and B1 through

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 8

B14, whichever are more convenient for the situation at hand. It should be
emphasized, however, that the wffs of S2 are metamathematical representations
of those of S1 and at the primitive level there is no distinction between individual
and propositional variables in S1. After we show that S1 and S2 are equivalent,
we shall interchangeably refer to these two systems.

5 Equivalence of Systems S1 and S2

We say that two formal systems are equivalent if any theorem that can be proved
in one system can also be proved in the other (except for a possible difference
of notation). In the case of systems S1 and S2, our main task is to prove from
S1 the substitution rules of S2. The rest of the proof follows as easy corollaries.

Theorem ??.1 (Substitution Theorem) Rules D and G of system S1
generate exactly those substitution instances defined by the substitution rules of
system S2.

Proof: First, we show that Algorithm D can generate only those substitu-
tion instances defined by the substitution rules of system S2. By inspection
of Algorithm D and the axioms of S1, we notice that only individual variables
(never wffs) will be substituted for individual variables. This follows from the
fact that the axioms are wffs, so that no wff appears as an argument of an = or
∈ connective nor as the first argument of a ∀ connective. Similarly, we notice
that only wffs (never individual variables) will be substituted for propositional
variables. Thus Rule D will never violate the substitution rules of system S2.

Similarly, Algorithm G will generate only acceptable substitution instances
of the generalization rule of S2.

It remains to be shown that Rules D and G are complete, i.e. that they can
derive all instances of the substitution rules of system S2.

Assume that a proof exists in system S2 for some theorem Fs. We want to
show that we can prove this theorem using the axioms and rules of system S1.

First we convert the proof in S2 to a proof in S1 by deleting all applications
of the substitution rules, replacing modus ponens with Rule D and replacing
generalization with Rule G. The result of the new proof will be a most general
theorem Fg of which the desired theorem Fs is a substitution instance.

Rule D has the following property. If Fs is any substitution instance of a
theorem Fg, then D(→ FsFs, Fg) (i.e. Fg detached from Fs → Fs) is Fs. This
is easy to see by examining Algorithm D.

We shall show that any formula of the form Fs → Fs, where Fs is a wff, is
D-derivable, i.e. can be proved in system S1. Then by applying the property of
Rule D just mentioned, we can D-derive Fs when it is a substitution instance
of some theorem Fg. This will complete our proof of the Substitution Theorem.

First we construct a proof of a theorem of the form Fv → (Fd → Fd). Fd is
a wff identical to Fs except that all appearances of the propositional variables
and individual variables in Fd will be distinct, i.e. each variable will appear only

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 9

once. Fv is a disjunction of all of the propositional variables contained in Fd and
also of formulas of the form ∀uG, one for each individual variable u contained
in Fd (and G is a dummy “place holder” propositional variable not in Fd nor
elsewhere in Fv).

We prove Fv → (Fd → Fd) by induction on the number of connectives in
the wff Fd (i.e. in Fs). The induction basis is one of the D-derivable lemmas

P → (P → P)(L1)

(∀xP ∨ ∀yQ)→ (x = y → x = y)(L2)

(∀xP ∨ ∀yQ)→ (x ∈ y → x ∈ y)(L3)

corresponding to the atomic wffs P , x = y, and x ∈ y. (The proofs of all lemmas
are given in the Appendix.) Note that in L2 and L3, P and Q are dummy place
holder propositional variables mentioned above, and their purpose is to capture
x and y so that x and y can be manipulated in a manner similar to propositional
variables.

For the induction hypothesis, we assume that all theorems with fewer con-
nectives than Fv → (Fd → Fd) and of that form can be proven. Fd, if not
atomic, must be of the form ¬G, G→ H, or ∀uG by the definition of a wff. We
prove Fv → (Fd → Fd) by detaching from one of the D-derivable lemmas

(P → (Q→ Q))→ (P → (¬Q→ ¬Q))(L4)

(P → (Q→ Q))→ ((R→ (S → S))→(L5)

((P ∨R)→ ((Q→ S)→ (Q→ S))))

(P → (Q→ Q))→ ((P ∨ ∀xR)→ (∀xQ→ ∀xQ))(L6)

corresponding to the connectives ¬,→, and ∀ respectively. In L6, R is a dummy
propositional variable that captures x.

At this point we have completed constructing a proof of Fv → (Fd → Fd).
Each variable in Fd will appear only once, whereas in Fs some variables will
probably appear more than once. We must transform Fd to Fs by forcing some
of the distinct propositional variables and distinct individual variables in Fd to
become identical to each other. Pick two such propositional variables G and H.
If Fv has more than two disjuncts, we detach Fv → (Fd → Fd) repeatedly from
the D-derivable lemmas

((P ∨Q)→ R)→ ((Q ∨ P)→ R)(L7)

(((P ∨Q) ∨R)→ S)→ ((P ∨ (Q ∨R))→ S)(L8)

to make G and H become the leftmost disjuncts of Fv, so that Fv is of the form
(G∨H)∨F where F is the rest of the disjunction. (We are implicitly assuming
that we are keeping track of the variables metamathematically, since the actual
subtheorems in the notation of system S1 have normalized variables after each

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 10

application of Rule D.) Next we detach from one of the D-derivable lemmas

((P ∨ P)→ Q)→ ((P ∨ P)→ Q)(L9)

(((P ∨ P) ∨Q)→ R)→ (((P ∨ P) ∨Q)→ R)(L10)

(L9 if Fv has only two disjuncts, L10 otherwise) to force the two distinct propo-
sitional variables G and H to match each other. The result is a theorem of the
form F ′

v → (F ′
d → F ′

d) in which the propositional variables G and H are now
identical.

To make individual variables identical to each other, we perform the same
kinds of manipulations with L7 and L8, except that we move disjuncts of the
form ∀uG and ∀vH to the leftmost positions. Detaching from L9 or L10 will
force u and v to match each other; G and H in this case will also become
identical, but this is irrelevant because they are dummy propositional variables.

We repeat the above steps for all distinct variables in Fd that must be made
identical to obtain a theorem of the form F ′′

v → (Fs → Fs). We detach this
from the D-derivable lemma

(P → (Q→ Q))→ (Q→ Q)(L11)

to discard the antecedent and finally obtain Fs → Fs.
A simple example is helpful to understand these steps. Suppose we have

proved P → P in system S1, and we want to prove the substitution instance
¬P → ¬P . Let Fg be P → P and Fs be ¬P → ¬P . First we construct a
proof for Fs → Fs, i.e. (¬P → ¬P) → (¬P → ¬P). We start with Lemma
L1, P → (P → P). We detach this from L4 to obtain P → (¬P → ¬P),
which we then detach twice from L5 to obtain (P ∨ Q) → ((¬P → ¬Q) →
(¬P → ¬Q)). We must make P and Q identical. Since there are only two
propositional variables, we do not need L7 or L8. Detaching from L9, we obtain
(P ∨ P) → ((¬P → ¬P) → (¬P → ¬P)). Detaching from L11, we obtain
(¬P → ¬P) → (¬P → ¬P), which is the desired Fs → Fs. Detaching P → P
from (¬P → ¬P)→ (¬P → ¬P), we finally obtain ¬P → ¬P .

(End of proof of Substitution Theorem.) �
The Substitution Theorem shows that the substitution rules of S2 can be

derived from the axioms and rules of S1. As an easy corollary, the modus ponens
rule of S2 is a special case of Rule D of S1, and the generalization rule of S2
follows from Rule G of S1 and the Substitution Theorem. Conversely, since
Rule D can be used as a rule of inference in a substitution and detachment
system [?], Rule D of S1 follows from modus ponens and the substitution rules
of S2, and Rule G of S1 follows as a special case of the generalization rule of
S2. The axioms of S1 and S2 are identical except for notation. It follows that
S1 and S2 have the same power of proof.

Having proved the Substitution Theorem, we shall make use of it implicitly
henceforth in order to shorten proofs. Thus in the Appendix, a formal proof of

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 11

any of the remaining lemmas in this paper may yield a more general case of the
lemma.

6 The System S3

Tarski [?] presents a simplified axiom system for traditional predicate calculus.
His system shares some similarities with our S2 above, and it will be convenient
to prove the completeness of S2 (and hence S1) by deriving from S2 that frag-
ment of Tarski’s system which contains only the predicate symbols = and ∈.
We shall call this fragment system S3. (For simplicity we are concerned with
completeness of systems with only these two predicate symbols; extension to an
arbitrary finite number of predicate symbols is straightforward.) We denote the
infinite set of (individual) variables of S3 arranged in sequence x, y, z,. . . . If u
and v are variables, then u = v and u ∈ v are atomic wffs; and if F and G are
wffs, so are ¬F , F → G, and ∀uF . The following are the axiom schemata of
S3, where F , G, and H are wffs:

(F → G)→ ((G→ H)→ (F → H))(C1)

(¬F → F)→ F(C2)

F → (¬F → G)(C3)

∀u(F → G)→ (∀uF → ∀uG)(C4)

F → ∀uF, where u is not among the set of variables occurring in F(C5)

¬∀u¬u = v, where u and v are distinct variables(C6)

u = v → (F → G), where F is any atomic wff in which u occurs,
and G is obtained from F by replacing a single
occurrence of u with v

(C7)

The inference rules of S3 are modus ponens and generalization.

7 Mapping Formulas from S1 into S3

We define a distinctor as a formula in S1, S2, or S3 of the form ¬∀uu = v where
u and v are distinct variables. We define as propositionless a formula of S1 (or
S2) containing only individual variables. We recall that the variables of S1 are
arranged in sequence a, b, c,. . . and those of S3 in sequence x, y, z,. . . . In this
section we shall use non-Polish notation when displaying formulas of system S1.

Certain axioms of S3 require that some individual variables be distinct from
one another, a requirement absent from S1; in particular, the Substitution The-
orem permits arbitrary substitutions of individual variables for individual vari-
ables in S1. Therefore we must represent the formulas of S3 indirectly in S1
by means of a suitable mapping. The completeness of S1 will then be proved
by showing that the set of propositionless theorems of S1 maps onto the set of

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 12

theorems of S3. (We shall not be concerned with those theorems of S1 that
have propositional variables since any such theorem corresponds to a theorem
schema, not a particular theorem, of system S3.)

The mapping we shall use in the completeness proof of S1 is the method of
distinctor elimination. This mapping requires that we sacrifice soundness in the
one-element domain because, as we shall see, the theorem ¬∀aa = b→ ¬∀aa = b
in S1 maps to the formula ¬∀xx = y in S3 which is false in an interpretation of
S3 with a one-element domain. However, we have chosen to use this mapping
because of its simplicity. (It is possible to devise other mappings that are sound
in all non-empty domains. S1 is complete in the one-element domain provided
that we add to any theory with that domain the nonlogical axiom a→ ∀ba.)

The method of distinctor elimination makes use of the following fact. A
distinctor ¬∀uu = v in S3 is true in all multiple-element domains (it also a
theorem of set theory). It can therefore be detached when used as an antecedent
of a theorem of S3, which under this mapping is implicitly extended to exclude
the one-element domain. Specifically, this mapping first replaces the variables
a, b, c,. . . in a theorem of S1 with the variables x, y, z,. . . of S3 on a one-to-
one basis. It then discards the theorem’s antecedent (if there is one) when
the antecedent is a distinctor or a conjunction of distinctors. For example, the
theorems ∃aa = b, (¬∀aa = b ∧ ¬∀aa = c) → ∃aa = b, ¬∀aa = b → (¬∀aa =
c → ∃aa = b), and ¬∀aa = a → ∃aa = b are mapped to ∃xx = y, ∃xx = y,
¬∀xx = z → ∃xx = y, and ¬∀xx = x → ∃xx = y respectively (note that
¬∀xx = x is not a distinctor). The completeness proof of S2 (and thus S1)
will show that any theorem of S3 can be proved in S2 provided we allow the
theorem to be prefixed with a possible antecedent consisting of a distinctor or
a conjunction of distinctors.

Distinctors are primarily intended to specify those pairs of variables in the
theorem that must be distinct. If the Substitution Theorem is used to replace
the two variables in a distinctor with a single variable, the distinctor becomes the
false formula ¬∀uu = u, and the theorem will remain valid because ¬∀uu = u
is conjoined to its antecedent. After making such a substitution, the method of
distinctor elimination will not discard ¬∀uu = u thus ensuring validity of the
theorem in S3.

Distinctors have two other roles. First, the variables in any theorem of S1
are normalized, whereas S3 permits any permutation of variables in a theorem.
To achieve an arbitrary permutation of variables in the representation in S3,
the order of the distinctors can be rearranged as needed and dummy distinctors
added so that the part of the theorem after the conjunction of distinctors has its
variables appear with the desired permutation. For example, ¬∀aa = b→ ∃bb =
a becomes ∃yy = x and (¬∀aa = b ∧ ¬∀aa = c) → ∃cc = a becomes ∃zz = x.
The rearranging and adding of distinctors is done using simple tautologies, the
Substitution Theorem and the following lemma:

¬∀aa = b→ ¬∀bb = a(L12)

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 13

Second, a result of Andréka (proved in [?]) shows that if we restrict S3 to the
fragment containing only a finite number n of variables (n > 2) then infinitely
many wff metavariables are required for a complete axiomatization. Since the
axiomatization of S3 has finitely many wff metavariables, it follows that dummy
variables, distinct from the variables in the theorem to be proved, must some-
times be introduced during the course of a proof in S3. In system S2 (and thus
S1), these dummy individual variables must remain embedded in the result of
the proof, for otherwise we could simply substitute for them, throughout a proof,
some other individual variable that occurs in the result, then restate the proof
in the language of S3, contrary to [?]. However, propositionless theorems can be
proved so that the dummy variables appear only in the conjunction of distinc-
tors that forms the antecedent of the theorem. This fact falls out of the method
we use to construct a proof for axiom C5 in the next section, C5 being the only
axiom that is not valid unless certain variables are distinct. Distinctors can
thus serve to collect the dummy variables and discard them when the theorem
is mapped into S3.

8 Completeness and Consistency of System S2

We now focus on the completeness of system S2, from which the completeness
of S1 will follow because of its equivalence with S2. In this discussion, we may
implicitly assume that distinctors are being used as described above to indi-
cate distinct variable restrictions, eliminate dummy variables, and force specific
permutations of variables in the theorems of S3.

In this section we assume that system S3 is consistent and complete. The
proofs are found in [?] and [?].

First we show that S2 is consistent. The axioms of S2 are easily seen to
be metatheorems of S3 when the propositional and individual variables of S2
are interpreted as metavariables ranging over wffs and variables of S3. It is
also easy to verify that the axioms remain metatheorems when subjected to
the substitution rules, i.e. that there are no distinct variable restrictions on
the axioms. The rules of modus ponens and generalization are the same as in
system S3. These two rules preserve soundness. Finally, it is easy to see that
a substitution rule applied to the result of another rule can be eliminated by
making appropriate substitutions at earlier steps in a proof, so that an equivalent
proof can be obtained in which substitutions apply only to axioms. Therefore
system S2 is consistent.

It remains to be shown that system S2 is complete. We shall do this by
deriving from S2 the axioms and rules of system S3.

Axiom schemata C1 through C4 correspond to all substitution instances of
the following four lemmas of S2, whose proofs are in the Appendix.

(P → Q)→ ((Q→ R)→ (P → R))(L13)

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 14

(¬P → P)→ P(L14)

P → (¬P → Q)(L15)

∀x(P → Q)→ (∀xP → ∀xQ)(L16)

Axiom schema C7 corresponds to all substitution instances of the following
three axioms and one lemma of S2.

x = y → (x = z → y = z)(B8)

x = y → (z = x→ z = y)(L17)

x = y → (x ∈ z → y ∈ z)(B12)

x = y → (z ∈ x→ z ∈ y)(B13)

Axiom schema C6 has the unnecessary verbal restriction “where u and v are
distinct variables.” In S2, we can prove the following more general restrictionless
lemma.

¬∀x¬x = y(L18)

Axiom schema C5 is proved as a metatheorem of S2 by induction on the
number of connectives in the wff F in F → ∀uF . The basis for the induction
are the following two axioms of S2 along with those substitution instances in
which x remains distinct from y and z.

¬∀xx = y → (¬∀xx = z → (y = z → ∀xy = z))(B9)

¬∀xx = y → (¬∀xx = z → (y ∈ z → ∀xy ∈ z))(B14)

Here, the antecedents of the form ¬∀uu = v are distinctors specifying (when
mapping to S3) that u and v be distinct variables. Thus B9 and B14 state, in
effect, “y = z → ∀xy = z where x does not occur in y = z” and “y ∈ z → ∀xy ∈
z where x does not occur in y ∈ z”.

In the induction step that follows, we shall implicitly use the lemma

¬∀xx = y → ∀z¬∀xx = y(L19)

which in effect states that a distinctor behaves as if no variable were free in it
(including y, as can be seen by substituting y for z in L19). According to the
Deduction Theorem for predicate calculus (which can be proved for S2 in a man-
ner analogous to that in [?, p. 77], with the slight complication that applications
of the substitution rule inside a deduction may affect the assumptions; cf. [?,
p. 140]), Lemma L19 allows us to use distinctors as assumptions or hypotheses
in a deduction, without having to worry about any undesirable side effects that
may result from using the generalization rule inside of a deduction. In what
follows we shall assume that all distinctors have been temporarily removed and
placed into an assumption list.

If the F in F → ∀uF is not an atomic wff then F → ∀uF must have one of
the three forms (G → H) → ∀u(G → H), ¬G → ∀u¬G, or ∀vG → ∀u∀vG by

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 15

the definition of a wff. As our induction hypothesis, we assume that we have
proven the shorter cases of C5, i.e. G→ ∀uG and H → ∀uH (in the case of→).
We can prove F → ∀uF by first applying the generalization rule as needed to
the shorter cases then detaching from a substitution instance of the lemma of
the following three that corresponds to the form of F → ∀uF .

∀x(P → ∀xP)→ ((Q→ ∀xQ)→ ((P → Q)→ ∀x(P → Q)))(L20)

∀x(P → ∀xP)→ (¬P → ∀x¬P)(L21)

∀y(P → ∀xP)→ (∀yP → ∀x∀yP)(L22)

There will be one assumption of the form ¬∀uu = v for each variable v
in F required to be distinct from u. We use the Deduction Theorem to re-
attach a conjunction of these assumptions as an antecedent G to the formula
F → ∀uF , and we interpret G as the informal phrase “where u is not among the
set of variables occurring in F”. The antecedent G is discarded when mapping
G → (F → ∀uF) to system S3 by the method of distinctor elimination. (This
completes the proof of axiom schema C5. This proof is analogous to one given
by Lemmas 22 through 25 in [?].)

Finally, the rules of S3 follow from the rules of S2 because they are the
identical.

9 Further Remarks

Remark ??.1 The theorems of system S2 may be viewed as metatheorems
of S3 (i.e. traditional predicate calculus), where the individual variables of S2
range over the variables of S3 and the propositional variables of S2 range over
wffs of S3. Three correspondences are useful in this context. First, as described
previously, an antecedent in the form of a distinctor ¬∀uu = v can be interpreted
as the requirement that u and v be distinct. Second, if a propositional variable
P is prefixed with ∀u throughout a formula, we can interpret ∀uP as a formula
metavariable F ranging over wffs in which u is not free. Third, if we interpret
a propositional variable P as F , the formula (u = v → P) ∧ ∃u(u = v ∧ P) can
be interpreted as F (u|v), i.e. as the proper substitution of v for u in F ; u and
v need not be distinct. Note that F (u|u)↔ F .

Remark ??.2 S2 (or S1) is not complete in the sense that some proposi-
tionless formulas corresponding to metatheorems of S3 are not provable in S2
because any dummy variable used in a proof must appear in the result of the
proof. In particular, for a given theorem of S3, we cannot know how it may be
represented in S2 until we have a proof and thus obtain an upper bound for the
number of dummy variables required. To achieve completeness in this sense we
can add to S2 the inference rule of quantifier elimination: if, in a theorem of
S2, a variable u occurs as the first argument of one or more ∀ connectives but
nowhere else, delete all occurrences of ∀u from the theorem. (An analogous rule

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 16

that preserves finite axiomatization can be added to S1.) To use this rule we
avoid any reference to B9 and B14 (whose quantifiers are the source of dummy
variables) in the construction of C5 in Section ?? and instead use the required
instance of C5 (prefixed with quantifiers to bind its variables) as an assumption
for the proof. Applied to the result of the proof, the rule of quantifier elim-
ination will reduce these assumptions to (quantified) tautologies that can be
discarded.

Remark ??.3 The following result for S2 is useful for eliminating unneces-
sary distinctors. (It will not eliminate distinctors containing dummy variables.)
The proof, whose details we omit, appeals to axiom B11 in particular to con-
struct a proof of ∀uu = v → (F (u, u) → F (u, v)) by induction on the number
of connectives in F (u, v).

Theorem ??.4 (Distinctor Reduction Theorem) Let F (u, v) be any for-
mula that may contain variables u and v, free or bound in any combination,
as well as any other variables. Suppose we have proofs of two theorems of the
forms: (1) ¬∀uu = v → F (u, v) and (2) F (u, u) where all occurrences of v (both
free and bound) in F (u, v) are replaced with u. Then F (u, v) is a theorem.

Remark ??.5 An open question is whether in S2 we can prove

¬∀xx = y → (x = y → (P → ∀x(x = y → P))).(B15)

Remark ??.6 We define a simple metatheorem as any metatheorem of S3
consisting only of connectives, individual metavariables, and wff metavariables
(with no arguments i.e. no explicit substitutions) and possibly accompanied
by a set of variable restrictions of the two forms “where u and v are distinct
variables” and “where u is not among the set of variables occurring in F .” For
example, all axiom schemata of S3 except C7 are simple metatheorems. We
define a system as metalogically complete if all of its simple metatheorems can
be proved with simple metalogic as follows: each step in the proof must be a
simple metatheorem, and the inference metalogic consists only of the two rules
of S3, together with the obvious two substitution rules (for individual and wff
metavariables) to produce new simple metatheorems from existing ones provided
that variable restrictions are not violated. At each step, the set of variable
restrictions is adjusted for any substitutions so that each restriction has only
two metavariables, and restrictions involving metavariables not contained in the
step are dropped. We do not formalize these notions here but it should be clear
how to do so, e.g. as in [?].

A metalogically complete system can be advantageous in a machine-oriented
application and perhaps in studies of logic since theorem schemata of traditional
predicate calculus, not just specific theorems, can be proved directly with simple
metalogic.

We define system S3′ as follows. Rewrite B1 through B15 in the formalization
of S3 by replacing P with F , x with u, etc. and call them C1′ through C15′.
Let S3′ consist of the language and rules of S3 along with axiom schemata C5,

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 17

C1′ through C13′, C15′, and

∀uu = v → (F → ∀uF), where u and v are distinct variables.(C16′)

All of the axiom schemata of S3′ are simple metatheorems. (C14′ is omitted
from S3′ because it can be proved from the others using only simple metalogic.)

It is not hard to show that S3′ is logically equivalent to S3 and thus has the
same set of simple metatheorems; the reasoning is similar to that in Section 8.
In addition, S3′ has the following stronger property.

Theorem ??.7 (Metalogical Completeness Theorem) System S3′ is met-
alogically complete.

Proof: We describe the main ideas of the proof but leave some details to the
reader. We let s and t (as well as u and v) represent individual metavariables
and use F (u|v) to abbreviate (u = v → F) ∧ ∃u(u = v ∧ F). Let H be the
simple metatheorem we wish to prove. Let u1, . . . , un be the distinct individual
metavariables in H. We associate with each wff metavariable Fi in H an m-ary
predicate Pi where m = n and whose jth argument corresponds to individual
metavariable uj in H, except that we reduce the arity of Pi by one and remove its
jth argument for each variable restriction “where uj does not occur in Fi”. We
temporarily extend S3′ with these predicates and add equality axioms for them
(similar to schema C7 of S3). Let He be the formula of extended S3′ obtained
by rewriting H with individual metavariables replaced with actual variables
x1, . . . ,xn of S3′ and each wff metavariable Fi replaced with its corresponding
extended m-ary predicate Pixi1 · · ·xim (1 ≤ i1 < · · · < im ≤ n). Since He is
an instance of metatheorem H and hence an actual theorem, it has an ordinary
proof in extended S3′.

To construct a proof for H in the original S3′, using only simple metalogic,
we mimic the proof of He. In the proof, in place of variables x1, . . . ,xn+d

(where d is the number of distinct dummy variables in the proof) outside of
extended predicates we use individual metavariables u1, . . . , un+d. In place of
an extended predicate occurrence Pixj1 · · ·xjm (1 ≤ jk ≤ n + d) we use the wff
Fi(ui1 |v1) · · · (uim |vm)(v1|uj1) · · · (vn|ujm), where v1, . . . , vm are dummy vari-
ables distinct from each other and from u1, . . . , un+d and that do not occur in
Fi. We recover Fi from Fi(ui1 |v1) · · · (uim |vm)(v1|ui1) · · · (vm|uim) at the end of
the proof using substitution laws F (u|v)(s|t)↔ F (s|t)(u|v) (where u and s are
distinct, u and t are distinct, and s and v are distinct) and F (u|v)(v|u) ↔ F
(where v does not occur in F), both provable in S3′ with simple metalogic.
(C15′ seems to be needed for these proofs. Since we omit the proofs of these
and a few other simple metatheorems, the reader may just regard them as ad-
ditional, though redundant, axioms of S3′ for the purpose of understanding the
main proof.)

In mimicking the proof, all applications of axioms and rules are analogous
except for three cases. (1) Whenever an equality axiom for an extended predi-
cate is referenced, we use instead the metatheorem u = v → (F (s|u)→ F (s|v))

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 18

(provable in S3′ with simple metalogic; C15′ seems to be needed), manipulating
F with the first substitution law above before and after this metatheorem is
applied. (2) Whenever schema C5 is referenced, we instead construct with sim-
ple metalogic an appropriate metatheorem of the form F → ∀uF (in a manner
similar to the proof of C5 in Section 8, possibly using C5 itself and also making
use of the metatheorem ∀uF → ∀u∀uF as needed). We place in an assumption
list any distinctors that arise. We use C16′ to eliminate a distinctor whenever H
has a restriction of the form “where u and v are distinct” and whenever a (dis-
tinct) dummy variable is introduced. (3) Whenever schema C16′ is referenced
but the variables u and v are not required to be distinct in H, we use instead
the tautology ¬∀uu = v → (∀uu = v → (F → ∀uF)) and place its antecedent
in the assumption list of distinctors.

To eliminate any remaining distinctors not part of H, we apply the Distinc-
tor Reduction Theorem (restated in the language of S3′), repeating the entire
procedure above to obtain a proof of its special case F (u, u). �

10 ZF Set Theory

Zermelo-Fraenkel (ZF) set theory is not a finitely axiomatizable extension of
traditional predicate calculus because the Axiom Schema of Replacement re-
quires a formula metavariable F ranging over certain wffs [?, p. 83]. (“No finite
number of axioms of ZF imply all the axioms of ZF.”) In the formalization of
system S2, however, we can represent a schema containing a wff metavariable F
by a formula containing a propositional variable P , allowing the Axiom Schema
of Replacement to become a particular axiom. At the primitive level of system
S1, this propositional variable is indistinguishable from the other variables but
behaves as if it were a formula metavariable when subjected to the axioms and
rules of S1. We can always write a formula of S3 in the formalization of S2
by anteceding it with a conjunction of distinctors; in particular, we can state
Replacement as

(¬∀xx = y ∧ ¬∀xx = z ∧ ¬∀yy = z)→
(∀x∃z∀y(∀zP → y = z)→ ∃x∀y(y ∈ x↔ ∃x(∀zP ∧ x ∈ z))).

Boyer et. al. [?] write, “since [ZF] cannot be finitely axiomatized, it cannot
be input to a resolution-based theorem prover” and base theirs (see also [?]) on
NBG, which is finitely axiomatized (in the customary sense). While ZF cannot
be directly input to such a prover, using the formalization of S1 it can be indi-
rectly input via the provability predicate method described in the Introduction.
Whether this offers practical advantages is not known.

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 19

Appendix: Proofs of the Lemmas in This Paper

We can make use of the fact that Rules D and G have unique results to com-
municate, unambiguously, complete formal proofs in system S1 in a compact
manner. We denote axioms A1 through A9 by the characters 1 through 9 and
A10 through A14 by the characters a through e. A character string is con-
structed as follows. Dqp represents the result of Rule D when the theorem
expressed by string p is detached from the theorem expressed by string q. Gp
is represents the result of Rule G applied to the theorem expressed by string p.
We call a proof expressed in this notation a proof string.

As an example of how a proof string is constructed, consider a proof of
∀xP → ∀x∀xP . For readability the notation of system S2 is used to display the
subtheorems, but the proof is implicitly in system S1 and uses Rules D and G
of system S1.

Step Subtheorem Reason Proof string
a. (P → (Q→ R))→ Axiom A2 2

((P → Q)→ (P → R))
b. P → (Q→ P) Axiom A1 1

c. (P → Q)→ (P → P) Rule D,a,b D21

d. P → (Q→ P) Axiom A1 1

e. P → P Rule D,c,d DD211

f. ∀x(P → P) Rule G,e GDD211

g. ∀x(∀xP → Q)→ (∀xP → ∀xQ) Axiom A4 4

h. ∀xP → ∀x∀xP Rule D,g,f D4GDD211

Thus the proof string for this proof is D4GDD211. (The reader may wish to verify
that a shorter proof string2 for this theorem is D4GD4G5.)

A proof string, then, is essentially a list of the steps in a formal proof ex-
pressed in a Polish prefix notation. A simple computer program (incorporating
algorithms D and G) can scan the proof string in reverse order and reconstruct
the formal proof.

In general, proof strings cannot represent the shortest possible proofs in sys-
tem S1 because subtheorems used more than once must have their proof strings
repeated. However, the proof strings below are short enough so that we don’t
bother to introduce notation that permits references to repeated subtheorems
or other lemmas. We use the character S to abbreviate DD2D1 (representing a
syllogism inference).

Because they are used to prove the Substitution Theorem, Lemmas L1
through L11 are the exact theorems proved by their proof strings. The re-
maining lemmas may be substitution instances of the theorems proved by their
proof strings and in such cases we implicitly apply the Substitution Theorem.

(L1) Proof: DDD21DD22D211

2Found by the Otter theorem prover [?].

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 20

(L2) Proof: DD2SSD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211D2D1SSD2-
S8DD28D3DD2S31SaSD4GSDDD22D219571S5SDD21bD4GSD3DD2S31SaSD4GSDDD22D219575-

D1S8S5SDD21bD4GSD3DD2S31SaSD4GSDDD22D219575

(L3) Proof: DD2SSD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S3S311S211D2D1SdS5-
SDD21bD4GSD3DD2S31SaSD4GSDDD22D219575D1ScS5SDD21bD4GSD3DD2S31SaSD4GSDDD2-

2D219575

(L4) Proof: D2D1S3SDDD21DD2D21D1SSDDD21DD2D21D1DD211331D211

(L5) Proof: SD2SSSDD22D11S12SD2D1SD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S-
3S311S211S21D2D1S21SDD2S21D11S2D2D1S1SD2S211

(L6) Proof: DD2SSSDD22D11S12SD2D1SD2SD2D1DD2S3D2S311SDD2S21D1S3D2D1D3DD2S-
3S311S211S21D1S4D4GSSDD2S21D15D1DD2115D2D1SSSD2D1D4G5D21DDDD21DD22D2115D-

D2S21D15

(L7) Proof: DD2S21D1S3D2D1D3DD2S3S311

(L8) Proof: DD2S21D1SS3D2D1D3DD2S3S311SSDD22D11S12D2DDD21S3D21D1S3D2D1D3D-
D2S3S311

(L9) Proof: DD2S21D1DD21D2S31

(L10) Proof: DD2S21D1DD21SD2D1DD21D2S31S3D21

(L11) Proof: SDD2SD2211DDD21DD2S21S21D1DD211

(L12) Proof: D3SD3DD2S3S311SSD4GSDD28D3DD2S31SaSD4GSDDD22D219575DD2bD4G5D-
D2S3S311

(L13) Proof: SD2S211

(L14) Proof: DD2S3D2S311

(L15) Proof: SD2S311

(L16) Proof: S4D4GSDD2S21D155

(L17) Proof: SD2S8DD28D3DD2S31SaSD4GSDDD22D219571

(L18) Proof: DaGS7D3DD2S3S311

(L19) Proof: SD4GSD3SD3DD2S3S311SS6D4GDD3DD2S31SSSDD2S21D1DD2bD4G5bSD4GSD-
D28D3DD2S31SaSD4GSDDD22D219575DD2bD4G5D3SD3DD2S3S311DD3DD2S31SS1SbSD4GSD-

D28D3DD2S31SaSD4GSDDD22D219575DD2bD4G5D3SD3DD2S3S311SD2D1DD2S21D15911DD2-

S3S31157

(L20) Proof: SSD2SSDD22D11S12SD2D1SDD2S21D1S3D2D1D3DD2S3S311SD2D1DD2S3D2S-
311S21SS21D2D1D4GS151SD2SS4D4GSSDD2S21D15SS21S31571

(L21) Proof: SDD2S21D17S4D4GSSDD2S21D15SS3SDD22D2S3S311D2D1D3DD2S3S3115

(L22) Proof: SD2D16S4D4GSDD2S21D155

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 21

References

[1] Boyer, Robert, Ewing Lusk, William McCune, Ross Overbeek, Mark
Stickel, and Lawrence Wos, “Set theory in first order logic: Clauses for
Gödel’s axioms,” Journal of Automated Reasoning, vol. 2 (1986), pp. 287–
327.

[2] Church, Alonzo, Introduction to Mathematical Logic, Volume 1, Princeton
University Press, Princeton, N. J., 1956.

[3] Cohen, Paul J., Set Theory and the Continuum Hypothesis, W. A. Ben-
jamin, Inc., Reading, Mass., 1966.

[4] Hamilton, Alan G., Logic for Mathematicians, Cambridge University Press,
Cambridge, 1988.

[5] Hindley, J. Roger and David Meredith, “Principal type-schemes and con-
densed detachment,” The Journal of Symbolic Logic, vol. 55 (1990), pp.
90–105.

[6] Kalish, Donald and Richard Montague, “On Tarski’s formalization of pred-
icate logic with identity,” Archiv für Mathematische Logik und Grundlagen-
forschung, vol. 7 (1965), pp. 81–101.

[7] Kalman, J. A., “Condensed detachment as a rule of inference,”Studia Log-
ica, vol. 42 No. 4 (1983), pp. 443–451.

[8] Kleene, Stephen Cole, Introduction to Metamathematics, D. Van Nostrand
Company, Inc., Princeton (1952).

[9] Megill, Norman D. and Martin W. Bunder, “Weaker D-complete logics,”
The University of Wollongong Department of Mathematics Preprint Series
no. 15/94. Submitted.

[10] Mendelson, Elliott, Introduction to Mathematical Logic, second edition,
D. Van Nostrand Company, Inc., New York (1979).

[11] Meredith, David, “In memoriam Carew Arthur Meredith (1904–1976),”
Notre Dame Journal of Formal Logic, vol. XVIII (1977), pp. 513–516.

[12] Mints, Grigori and Tanel Tammet, “Condensed detachment is complete for
relevance logic: A computer-aided proof,” Journal of Automated Reasoning,
vol. 7 (1991), pp. 587–596.

[13] Monk, J. Donald, “Substitutionless predicate logic with identity,” Archiv
für Mathematische Logik und Grundlagenforschung, vol. 7 (1965), pp. 103–
121.

A Finitely Axiomatized Formalization of Predicate Calculus with Equality 22

[14] Nemeti, I., “Algebraizations of quantifier logics, an overview,” version 11.4,
preprint, Mathematical Institute, Budapest, 1994. A shortened version
without proofs appeared in Studia Logica, vol. 50 (1991), pp. 485–569.

[15] Peterson, Jeremy George, “An automatic theorem prover for substitution
and detachment systems,” Notre Dame Journal of Formal Logic, vol. XIX
(1978), pp. 119–122.

[16] Robinson, J. A., “A machine-oriented logic based on the resolution princi-
ple,” Journal of the Association for Computing Machinery, vol. 12 (1965),
pp. 23–41.

[17] Tarski, Alfred, “A simplified formalization of predicate logic with identity,”
Archiv für Mathematische Logik und Grundlagenforschung, vol. 7 (1965),
pp. 61–79.

[18] Tarski, Alfred and Steven Givant, A Formalization of Set Theory Without
Variables, American Mathematical Society Colloquium Publications, vol.
41, American Mathematical Society, Providence, R. I., 1987.

[19] Wos, L., Automated Reasoning: 33 Basic Research Problems, Prentice-Hall,
Englewood Cliffs, N. J., 1987

[20] Wos, Larry, Ross Overbeek, Ewing Lusk and Jim Boyle, Automated Rea-
soning: Introduction and Applications, second edition, McGraw-Hill, Inc.,
New York, 1992.

[21] Wos, L. T., and G. A. Robinson, “Maximal models and refutation complete-
ness: Semidecision procedures in automated theorem proving,” in William
W. Boone, Frank Benjamin Cannonito, and Roger C. Lyndon, editors,
Word Problems: Decision Problems and the Burnside Problem in Group
Theory, pp. 609–639, North-Holland, Amsterdam, 1973, Studies in Logic
and the Foundations of Mathematics, vol. 71.

[22] Zeman, J. J., Modal Logic, Oxford University Press, Oxford, 1973.

