
The Metamath

Proof Language

Norman Megill

May 9, 2014

Metamath development server
1

Overview of Metamath

• Very simple language: substitution is the only basic rule

• Very small verifier (≈300 lines code)

• Fast proof verification (6 sec for ≈18000 proofs)

• All axioms (including logic) are specified by user

• Formal proofs are complete and transparent, with no hidden

implicit steps

2

Goals

Simplest possible framework that can express and verify
(essentially) all of mathematics with absolute rigor

Permanent archive of hand-crafted formal proofs

Elimination of uncertainty of proof correctness

Exposure of missing steps in informal proofs to any level of
detail desired

Non-goals (at this time)

Automated theorem proving

Practical proof-finding assistant for working mathematicians

3

transparency

sophistication

× ×
×

×

× others

×
Metamath

(Ficticious conceptual chart)
4

Contributors

David Abernethy David Harvey Rodolfo Medina
Stefan Allan Jeremy Henty Mel L. O’Cat
Juha Arpiainen Jeff Hoffman Jason Orendorff
Jonathan Ben-Naim Szymon Jaroszewicz Josh Purinton
Gregory Bush Wolf Lammen Steve Rodriguez
Mario Carneiro Gérard Lang Andrew Salmon
Paul Chapman Raph Levien Alan Sare
Scott Fenton Frédéric Liné Eric Schmidt
Jeffrey Hankins Roy F. Longton David A. Wheeler
Anthony Hart Jeff Madsen

5

Examples of axiom systems expressible with Metamath
(Blue means used by the set.mm database)

• Intuitionistic, classical, paraconsistent, relevance, quantum
propositional logics

• Free or standard first-order logic with equality; modal and
provability logics

• NBG, ZF, NF set theory, with AC, GCH, inaccessible and
other large cardinal axioms

Axiom schemes are exact logical equivalents to textbook
counterparts. All theorems can be instantly traced back to
what axioms they use.

6

What has been accomplished? (1 of 2)

24 of Freek Wiedijk’s “Formalizing 100 Theorems” (from ZFC)

√
2 irrationality Cantor’s theorem

Denumerability of rationals Sum of a geometric series
Pythagorean theorem Sum of an arithmetic series
Euler’s gen of Fermat’s Little Thm GCD algorithm
Infinitude of primes Mathematical induction
De Moivre’s theorem Cauchy-Schwarz inequality
Uncountability of reals Intermediate value theorem
Schroeder-Bernstein thm Fundamental thm of arithmetic
Binomial theorem Desargues’s theorem
Number of subsets of a set Triangle inequality
Bezout’s theorem Bertrand’s Postulate
Sum of recipr. of triang. numbers Formula for Pythagorean triples

7

What has been accomplished? (2 of 2)

Other examples (all proved directly from ZFC axioms)

Hartogs’ theorem (without using Axiom of Choice)

Konig’s theorem (set theory)

Dedekind-cut construction of reals

Pocklington’s theorem (primality test)

Euler’s identity eiπ = −1 (and other complex trig and logs)

Cayley’s theorem

Bolzano-Weierstrass theorem

Heine-Borel theorem

Banach fixed point theorem

Baire’s category theorem

Uniform boundedness principle (Banach-Steinhaus theorem)

Riesz representation theorem

8

9

10

11

The Metamath language

12

Metamath language syntax

Syntax elements: symbols (math symbols), labels (statement

identifiers), and 11 language keywords: $c $v $f $e $d $a $p $.

$= ${ $}

Constant declaration: $c symbols $.

Variable declaration: $v symbols $.

Variable-type assignment: label $f symbols $.

Logical hypothesis: label $e symbols $.

Distinct variable proviso: $d symbols $.

Axiom scheme: label $a symbols $.

Theorem scheme and its proof: label $p symbols $= labels $.

Delimit scope of $f, $d, $e: ${ . . . $}

Complete specification is in Metamath book, pp. 92–95

13

Textbook example: Hamilton, Logic for Mathematicians

(1988), p. 32

Metamath’s web page display of id1 proof

14

Example - Intuitionistic implicational calculus (1 of 2)

$c |- wff () -> $. Declare 5 constants
$v ph ps ch $. Declare 3 variables (ϕ, ψ, χ)
wph $f wff ph $. Establish variable type for ϕ
wps $f wff ps $. Establish variable type for ψ
wch $f wff ch $. Establish variable type for χ
wi $a wff (ph -> ps) $. Syntax builder for implication

Two axiom schemes and rule of modus ponens:
ax-1 $a |- (ph -> (ps -> ph)) $.

ax-2 $a |- ((ph -> (ps -> ch))

-> ((ph -> ps) -> (ph -> ch))) $.

${
maj $e |- (ph -> ps) $.

min $e |- ph $.

ax-mp $a |- ps $.

$}
15

Example - Intuitionistic implicational calculus (2 of 2)

Theorem scheme: Identity law
id1 $p |- (ph -> ph) $=

wph wph wph wi wi wph wph wi wph wph wph wi wph wi wi

wph wph wph wi wi wph wph wi wi wph wph wph wi wph ax-2

wph wph wph wi ax-1 ax-mp wph wph ax-1 ax-mp $.

Logic step actions and resulting proof steps:

Push ax-2 |- ((ph -> ((ph -> ph) -> ph))

-> ((ph -> (ph -> ph)) -> (ph -> ph)))

Push ax-1 |- (ph -> ((ph -> ph) -> ph))

Pop maj, pop min, push ax-mp

|- ((ph -> (ph -> ph)) -> (ph -> ph))

Push ax-1 |- (ph -> (ph -> ph))

Pop maj, pop min, push ax-mp

|- (ph -> ph)

16

“Hidden” hypotheses for substitution assignments to

variables in $a and $p statements

ax-1 showing all hypotheses (pops 2 from stack, pushes 1):

wph $f wff ph $.

wps $f wff ps $.

ax-1 $a |- (ph -> (ps -> ph)) $.

ax-mp showing all hypotheses (pops 4 from stack, pushes 1):

wph $f wff ph $.

wps $f wff ps $.

min $e |- ph $.

maj $e |- (ph -> ps) $.

ax-mp $a |- ps $.

17

Syntax-building steps for substitution assignments

Theorem scheme: Identity law

id1 $p |- (ph -> ph) $=

wph wph wph wi wi wph wph wi wph wph wph wi wph wi wi

wph wph wph wi wi wph wph wi wi wph wph wph wi wph ax-2

wph wph wph wi ax-1 ax-mp wph wph ax-1 ax-mp $.

MM> show proof id1 /all /lemmon

...

31 wph $f wff ph

32 wph $f wff ph

33 wph $f wff ph

34 32,33 wi $a wff (ph -> ph)

35 31,34 ax-1 $a |- (ph -> ((ph -> ph) -> ph))

...

18

Why explicit syntax-building steps?

Theorem scheme: Identity law
id1 $p |- (ph -> ph) $=

wph wph wph wi wi wph wph wi wph wph wph wi wph wi wi

wph wph wph wi wi wph wph wi wi wph wph wph wi wph ax-2

wph wph wph wi ax-1 ax-mp wph wph ax-1 ax-mp $.

Only the logic steps “ax-2 ax-1 ax-mp ax-1 ax-mp” are needed
theoretically (and by some verifiers e.g. Metamath Solitaire)

Advantages of explicit syntax-building steps:
• Faster verification (no unification needed)
• Simpler verifier (no unification algorithm needed)

Disadvantage:
• Verbose proofs

19

Compressed proofs

Identity law with compressed proof

id1 $p |- (ph -> ph) $=

(wi ax-2 ax-1 ax-mp) AAABZBZFAFABBGFBAFACAFDEAADE $.

Specification is in Appendix B of Metamath book

Advantages:

• 85% proof size reduction on average (7× smaller)

• 6× faster verification (reading compressed format directly)

• set.mm size breakdown: 8.5MB for proofs, 16.3MB total

20

Predicate calculus with equality

21

Classical propositional calculus

We will implicitly assume predicate calculus axioms include:

Axiom schemes for classical propositional calculus

(Lukasiewicz’s system, called P2 by Church)

22

Variables vs. metavariables

Elements of actual first-order logic (for set theory):

• Fixed set of individual variables: v1, v2, v3,. . .

• Wffs (well-formed formulas) constructed from variables

connected by = and ∈, which are then used to build up larger

wffs connected with →, ¬, ∀ (e.g. (v1 = v3 → ¬∀v2 v2 ∈ v4)).

• There are no wff variables

Elements of Metamath (set.mm database):

• Individual metavariables x, y,. . . ranging over v1, v2, v3,. . .

• Wff metavariables ϕ, ψ,. . . ranging over wffs such as v2 ∈ v4

and (v1 = v3 → ¬∀v2 v2 ∈ v4)

• x = y, x ∈ y, ¬ ϕ, (ϕ → ψ), and ∀xϕ are wff schemes

• Actual variables v1, v2, . . . are never mentioned explicitly

23

Simple schemes and simple metalogic

Simple scheme - An axiom scheme or theorem scheme

containing only:

1. Wff metavariables ϕ, ψ,. . . with no arguments

2. Individual metavariables x, y,. . .

3. Provisos of the form “where x and y are distinct”

4. Provisos of the form “where x does not occur in ϕ”

Proof using simple metalogic - A proof in which each step is

a simple scheme—either a direct substitution into an axiom

scheme (inheriting any provisos) or an inference rule applied to

previous steps.

24

Proofs: logic vs. simple metalogic

In a standard first-order logic proof, each step is a single

instance of an axiom scheme (or rule applied to previous steps)

using v1, v2, There are no provisos associated with any step

(or the final theorem). All variables are “distinct” by definition.

In simple metalogic, each proof step is itself a scheme using

x, y,. . . and ϕ, ψ,. . . and possible distinct-variable provisos

25

Predicate calculus (with equality) in Metamath

The Metamath language (simple schemes) does not have “free
variable” and “proper substitution” as built-in primitives.
Traditional predicate calculus cannot be represented directly.

Tarski’s system S2 (1965) (with predicates = and ∈) is
equivalent but has only simple schemes for its axioms.

Tarski’s system S2

26

Example of proof as intended by Tarski’s system S2:

1 ` (v2 ∈ v1 → (v2 = v1 → v2 ∈ v1)) ax-1

2 ` ∀v1(v2 ∈ v1 → (v2 = v1 → v2 ∈ v1)) 1, ax-gen

3 ` (∀v1(v2 ∈ v1 → (v2 = v1 → v2 ∈ v1))

→ (∀v1v2 ∈ v1 → ∀v1(v2 = v1 → v2 ∈ v1))) ax-5

4 ` (∀v1v2 ∈ v1 → ∀v1(v2 = v1 → v2 ∈ v1)) 2,3, ax-mp

Proof using simple metalogic (Metamath):

1 ` (ϕ→ (ψ → ϕ)) ax-1

2 ` ∀x(ϕ→ (ψ → ϕ)) 1, ax-gen

3 ` (∀x(ϕ→ (ψ → ϕ))→ (∀xϕ→ ∀x(ψ → ϕ))) ax-5

4 ` (∀xϕ→ ∀x(ψ → ϕ)) 2,3, ax-mp

27

Metalogical completeness

A set of axiom schemes is metalogically complete when all
valid simple schemes are provable with simple metalogic.

Example: System P2 of classical propositional calculus is
metalogically complete.

Problem: Tarski’s system S2, while logically complete, is not
metalogically complete.

Example: (ax-11 in set.mm) can
only be proved in S2 by induction on formula length of ϕ

Solution: Extend Tarski’s S2 with additional (though logically
redundant) simple schemes.

28

Metamath’s schemes vs. Tarski’s system S2

29

Metalogical completeness

Theorem. The extended set of axiom schemes ax-1 through

ax-17 is metalogically complete (Theorem 9.7 in Megill

1995).

Open problem: The (metalogical) independence of of these

schemes has not been proven, except for ax-9 and ax-11.

• Independence of ax-9 proved by Raph Levien (2005)

• Independence of ax-11 proved by Juha Arpiainen (2006)

30

Distinct variable provisos

The axiom scheme “(ϕ→ ∀xϕ), where x does not occur in ϕ”
is expressed in the Metamath language as
${

$d x ph $.

ax-17 $a |- (ph -> A. x ph) $.

$}

Rule: Substitutions inherit distinct variable provisos.

Example: Substitute y = z for ϕ. Then

(ϕ→ ∀xϕ), where x does not occur in ϕ

becomes

(y = z → ∀x y = z), where x is distinct from y and z.

31

Traditional logic notions using Metamath

Traditional logic: “where x is not free in ϕ”

Metamath: use logical ($e) hypothesis ` (ϕ→ ∀xϕ)

Traditional logic: “The proper substitution of y for x in ϕ”

Metamath: [y/x]ϕ, defined ((x = y → ¬ϕ)→ ∀x(x = y → ϕ)))

Traditional logic: “ϕ(y) where y is free for x in ϕ(x)”

Metamath: [y/x]ϕ

32

Definitions in Metamath

• Definitions are introduced as axioms ($a) and are

indistinguishable from axioms to the verifier

• Soundness (eliminability and non-creativity) depends highly

on the underlying logic and cannot be automatically

checked generally

• In set.mm we require new definitions to be automatically

checkable. All but 3 definitions in set.mm are

automatically verifiable with a simple algorithm.

33

Definitions for predicate calculus in set.mm

Definitions extend wff syntax, and the definiendum (l.h.s.) and

definiens (r.h.s.) are connected with the biconditional ↔ .

Examples:

df-an ` ((ϕ ∧ ψ) ↔ ¬(ϕ→ ¬ψ))

df-ex ` (∃xϕ ↔ ¬∀x¬ϕ)

df-eu ` (∃!xϕ ↔ ∃y∀x(ϕ↔ x = y))

where x and y are distinct and y does not occur in ϕ

Any new variable on r.h.s. must be distinct from all others.

34

ZFC set theory

35

Axiom schemes for ZFC set theory in set.mm

36

Axioms vs. axiom schemes again

In Metamath, every axiom, theorem, and proof step is a simple

scheme

In standard ZFC set theory, the Axiom of Extensionality is a

specific axiom in the language of first-order logic:

(∀v3(v3 ∈ v1 ↔ v3 ∈ v2)→ v1 = v2)

In Metamath (set.mm), this is stated as an axiom scheme:

(∀z (z ∈ x ↔ z ∈ y)→ x = y), where x, y, z are distinct

Under first-order logic, every instance of this scheme is logically

equivalent to the specific axiom

37

Axiom Scheme of Replacement

In set.mm, Replacement is automatically a scheme:

(∀w∃y∀z(∀yϕ → z = y) → ∃y∀z(z ∈ y ↔ ∃w (w ∈ x ∧ ∀yϕ))),

where x, y, z, w are distinct

By using ∀yϕ instead of ϕ, we “protect” it against the case

where ϕ might be substituted with an expression containing y.

Alternately, we could use just ϕ and add the proviso “where y

does not occur in ϕ.” A matter of taste.

We can also eliminate all provisos:

∃x(∃y∀z(ϕ → z = y)→ ∀z(∀y z ∈ x ↔ ∃x(∀z x ∈ y ∧∀yϕ)))

38

Class builders

A class builder is an expression of the form {x | ϕ}. Let A,

B,. . . be metavariables ranging over class builders. We extend

wffs with the following “definitions:”

y ∈ {x | ϕ} ↔ [y / x]ϕ

A = B ↔ ∀x (x ∈ A ↔ x ∈ B)

A ∈ B ↔ ∃x (x = A ∧ x ∈ B)

where x does not occur in A or B. Soundness (eliminability,

non-creativity) must be proved outside of Metamath, and

Metamath treats them (like all definitions) as axioms.

We can prove x = {y | y ∈ x} when x and y are distinct, so an

individual variable x is a special case of a class expression.

39

Defining new classes

In definitions extending class syntax, the definiendum (l.h.s.)

and definiens (r.h.s.) are connected with equality =.

Examples: Universal class, union of a class, maps-to notation

df-v ` V = {x|x = x}

df-uni `
⋃
A = {x|∃y(x ∈ y ∧ y ∈ A)}

where x and y are distinct and do not occur in A

df-mpt ` (x ∈ A 7→ B) = {〈x, y〉|(x ∈ A ∧ y = B)}
where x and y are distinct, and y does not occur in A or B

40

Emulating deductions in a Hilbert-style system (1 of 2)

• Metamath is intended for Hilbert-style deductive systems

(axiom schemes plus inference rules)

• Metamath does not have the Deduction Theorem

built in (“∆ ∪ {P} ` Q implies ∆ ` P → Q”).

• Alternative: Natural deduction emulation

41

Emulating deductions in a Hilbert-style system (2 of 2)

42

The End

Thank you!

43

Supplementary slides

44

Recursive definitions (1 of 2)

Recursive definitions are hard to eliminate. Instead, we can

define a “recursive definition generator” (df-rdg):

` rec(F ,A) =
⋃
{f | ∃x ∈ On (f Fnx

∧ ∀y ∈ x f ‘y = (g 7→ if(g = ∅, A,
if(Lim dom g,

⋃
ran g,

F ‘(g‘
⋃

dom g))))‘(f � y))},
where x, y, f, g don’t occur in F or A

F is the characteristic function, A is the initial value, and

rec(F ,A) is a function on the (proper) class of all ordinals.

45

Recursive definitions (2 of 2)

Ordinal addition is defined with a direct definition (df-oadd):

` +o = (x ∈ On, y ∈ On 7→ (rec((z ∈ V 7→ suc z), x)‘y))

where x, y, z are distinct

Recursive definition emerges as theorems (oa0, oasuc, oalim):

`(A ∈ On→ (A+o ∅) = A)

`((A ∈ On ∧B ∈ On)→ (A+o sucB) = suc (A+o B))

`((A ∈ On ∧B ∈ On ∧ LimB)→ (A+o B) =
⋃
x ∈ B(A+o x)),

where x doesn’t occur in A or B

46

Emulating Hilbert’s epsilon in ZFC (1 of 2)

The class expression “εxϕ” denotes “some x satisfying wff ϕ.”
The Transfinite Axiom is a conservative extension of ZFC:

ϕ→ [εxϕ/x]ϕ

where x is free in ϕ and [. . . /x]ϕ denotes proper substitution.

To emulate the transfinite axiom in ZFC, we define two class
expressions A and B, where y is does not occur in ϕ:

A = {x|(ϕ ∧ ∀y([y/x]ϕ→ (rank‘x) ⊆ (rank‘y)))}
B =

⋃
{x ∈ A|∀y ∈ A¬y r x}

Theorem (hta in set.mm):

r We A→ (ϕ→ [B/x]ϕ)

Class B emulates Hilbert’s epsilon εxϕ.

47

Emulating Hilbert’s epsilon in ZFC (2 of 2)

Epsilon-calculus proof ZFC proof
... ...

ϕ→ [εxϕ/x]ϕ r We A→ (ϕ→ [B(r)/x]ϕ)
... ...

(manipulate εxϕ) (manipulate B(r))
... ...

(εxϕ-free result) r We A→ (B(r)-free result)

∃r r We A→ (B(r)-free result)

(B(r)-free result)
... ...

More details:

http://us.metamath.org/downloads/megillaward2005he.pdf

48

