Metamath
A Computer Language for Mathematical Proofs

Norman Megill

with extensive revisions by

David A. Wheeler

2019-06-02

~ PUBLIC DOMAIN ~

This book (including its later revisions) has been released into the Public
Domain by Norman Megill per the Creative Commons CCO 1.0 Universal
(CCO 1.0) Public Domain Dedication
(https://creativecommons.org/publicdomain/zero/1.0/)). David A.
Wheeler has done the same. The public domain release applies worldwide.
In case this is not legally possible, the right is granted to use the work for
any purpose, without any conditions, unless such conditions are required by
law.

Several short, attributed quotations from copyrighted works appear in this
book under the “fair use” provision of Section 107 of the United States
Copyright Act (Title 17 of the United States Code). The public-domain

status of this book is not applicable to those quotations.

Any trademarks used in this book are the property of their owners.

ISBN: 978-0-359-70223-7

Lulu Press
Morrisville, North Carolina
USA

Norman Megill
93 Bridge St., Lexington, MA 02421
E-mail address: nm@alum.mit.edu

David A. Wheeler
E-mail address: dwheeler@dwheeler.com

http://metamath.org

https://creativecommons.org/publicdomain/zero/1.0/
http://metamath.org

Contents

I1.1 Mathematics as a Computer Language|

[1.1.1 Is Mathematics “User-Friendly”?

[1.1.2 Mathematics and the Non-Specialist|

I1.1.3 An Impossible Dream?|.

.1.4 Beauty|.

1.1.5 mmplicity]o

...........................

1.2 Computers and Mathematicians|.

1.2.1 Trusting the Computerf
1.2.2 rusting the Mathematician|.
1.3 e Use of Computers in Mathematics|.
1.3.1 omputer Algebra Systems|

1.3.5 Creating a Database of Formalized Mathematics| . . .

11.3.6 In Summary|,
1.4 Mathematics and Metamath(.
.4.1 Standard Mathematicesf
[1.4.2 Other Formal Systems|
1.4.3 Metamath and Its Philosophy|.
1.4. istory of the Approach Behind Metamath|

[1.4.5 Metamath and First-Order Logicf

[2_Using the Metamath Program|

2.2 Your First Formal System|

[

From Nothing to Zero|

[2.2.2 Converting It to Metamath|

P31

Some Hints for Using the Command Line Interface| . .

iii

12
14
15
16
18
20
21
22
24
24
25
27
28
29
31
31
31
32
33
33
34

37
37
38
38
40
44

iv CONTENTS

2.4 Your First Proofl 50
2.5 A Note About Editing a Database File|. 57
[B3__Abstract Mathematics Revealed| 59
3.1 Logic and Set Theoryl 59
3.2 The Axioms for All of Mathematicsl. 62
3.2.1 Propositional Calculus|. 62
B22 Predicate Calculug 64
.23 Set Theory|, 68
B24 Other Axiomsl. . - -« v v vt 70

8.3 The Axioms in the Metamath Languagel 70
13.3.1 Propositional Calculus|, 70
13.3.2 Axioms of Predicate Calculus with Equality—Tarski’s |

[D2 . 71
13.3.3 Axioms of Predicate Calculus with Equality—Auxiliary| 71
3.3.4 Set Theory| 71
B35 That’'sItl 72

[3.4 A Hierarchy of Definitions| 72
3.4.1 efinitions for Propositional Calculus| 74
3.4.2 Definitions for Predicate Calculus 76

77

85

3.6 A Theorem Sampler| 86
[3.7 Axioms for Real and Complex Numbers| 89
xioms for Real and Complex Numbers Themselves| 90

.2 omplex Number Axioms in Analysis Texts| 91

13.7.3 Eliminating Unnecessary Complex Number Axioms|. . 92

8.8 Two Plus Two Equals Four| 92
B9 Deductionl 94
(3.9.1 The Standard Deduction Theoreml 94
8.9.2 Weak Deduction Theoreml 95
8.9.3 Deduction Style|. o000 97
8.9.4 Natural Deductionl 98
[3.9.5 Strengths of Our Approach| 101

BI0 Exploring the Set Theory Databasd 101
3.10.1 ote on the “Compact” Proof Format|. 109

[4 The Metamath Language) 111
[1 Specification of the Metamath Language] 112
ATT1 Preliminaries 112
4.1.2 Preprocessing| oL 113
4.1.3 Basic Syntax|] oL 113
414 Proof Verificationl. 115

4.2 The Basic Keywords| 116

CONTENTS

[d.2.4 The $§d Statement|
[4.2.5 The $f and $e Statements|.
4.2.6 Assertions ($a and $p Statements)
427 Frameso
[4.2.8 Scoping Statements (${ and $})|

a3

The Anatomy of a Proof]

[4.3.1 The Concept of Unification|

. xtensions to the Metamat anguage|

1 omments in the Metamath Language]
4.4.2 The Typesetting Comment ($t)
4.4.3 Additional Information Comment ($j)
4.4.4 Including Other Files in a Metamath Source File| . . .
[£45 Compressed Proof Format]

446 pecifying Unknown Proofs or Subproofs]

4.5 Axioms vs. Definitionsl

4.5.2 The Approach to Definitions in set.mm|
[4.5.3 Adding Constraints on Definitions|

54 ummary ot Approach to Definitions|.

|5 The Metamath Program|

.1
0.2

nvoking Metamath|.,
ontrolling Metamath|,

5.2.2 open log Command|

EQ? close log Command|

[5.2.9 set height Command|.
5.2.10 beep Command|.
62117 more Commandl.

53

53!

Showing Status and Statements|

[5.4.1 show settings Command|.
E.Z.Q show memory Command]
[543 show labels Command

vi CONTENTS

b.4.4 show statement Command 164
9.4.5 search Command| 164
9.5 Displaying and Veritying Proots|. 165
5.5.1 show proof Command|. 165
|5.5.2 show usage Command|. 166
[£.5.3 show trace back Commandl 166
5.5.4 verif roof Command| 166
P55 verify markup Command). 167
[F-55.6 save proof Command|. 167
[5.6 Creating Proofs| 168
5.6.1 prove Command| 170
(.62 set unification timeout Command 170
5.6.3 set empty_substitution Command|. 171
5.6.4 set search limit Command]
[5.6.5 show new proof Command| 171
5.6.6 assign Command| 172
F67 match Commando 172
0.6.8 Jlet Commandl 173
[0.6.9 unify Command| 173
initialize Command|. 174
0.6.11 delete Commandl 174
[5.6.12 improve Command|. 175
5.6.13 save new_proof Command| 175
. reating utput| 176
(.71 open tex Command| 176
B72 close tex Commando 177
p.8 Creating HI'ML Output|. 177
0.8.1 write theorem list Command| 178
5.8.2 write bibliography Command| 178
H.8.3 write recent additions Command 178
B9 Text File Utilitied 179
BI91T toolsCommand 179
[5.9.2 help Command (in tools) 179
[5.9.3 Using tools to Build Metamath submit ocripts| . . . 180
9.9.4 Example of a tools Session| 180
|A Sample Representations| 183
IB Compressed Proofs| 187
|[C Metamath’s Formal System| 189
[C1 Tntroduction]. 189
|C.2_The Formal Description| 190
(C.2.1 Preliminariesl 190

|C.2.2 Constants, Variables, and Expressions| 190

CONTENTS vii

IC.2.3 Substitutionl. 191

IC.2.4 Statementso 191

IC.2.5 Formal Systems|. L. 193

|C.3 _Examples of Formal Systems| 194
C:3. 1 Example I—Propositional Calculug. 194

3.2 Example 2—Predicate Calculus with Equality|. 196

|IC.3.3 Free Variables and Proper Substitution| 198

|C.3.4 Metalogical Completeness| 199

IC.3.5 Example 3—Metalogically Complete Predicate Calcu- |

Tus with Bquality] . . « . . v v v v e oo e 199

[C3.6 Example 4 _Adding Definitions|. 201

IC.3.7 Example 5—7ZFC Set Theory| 202

IC.3.8 Example 6—Class Notation in Set Theory|. 202

|C.4 Metamath as a Formal System| 204

[D The MIU System| 207
[E Metamath Language EBNF]| 211
Bibliography/ 215

mdex| 221

viii CONTENTS

Preface

Overview

Metamath is a computer language and an associated computer program for
archiving, verifying, and studying mathematical proofs at a very detailed
level. The Metamath language incorporates no mathematics per se but treats
all mathematical statements as mere sequences of symbols. You provide
Metamath with certain special sequences (axioms) that tell it what rules
of inference are allowed. Metamath is not limited to any specific field of
mathematics. The Metamath language is simple and robust, with an almost
total absence of hard-wired syntax, and W{I believe that it provides about
the simplest possible framework that allows essentially all of mathematics to
be expressed with absolute rigor.

Using the Metamath language, you can build formal or mathematical
systemﬂ that involve inferences from axioms. Although a database is pro-
vided that includes a recommended set of axioms for standard mathematics,
if you wish you can supply your own symbols, syntax, axioms, rules, and
definitions.

The name “Metamath” was chosen to suggest that the language provides
a means for describing mathematics rather than being the mathematics itself.
Actually in some sense any mathematical language is metamathematical.
Symbols written on paper, or stored in a computer, are not mathematics
itself but rather a way of expressing mathematics. For example “7” and “VII”
are symbols for denoting the number seven in Arabic and Roman numerals;
neither is the number seven.

If you are able to understand and write computer programs, you should
be able to follow abstract mathematics with the aid of Metamath. Used in

1Unless otherwise noted, the words “I,” “me,” and “my” refer to Norman Megill, while
“we,” “us,” and “our” refer to Norman Megill and David A. Wheeler.

2A formal or mathematical system consists of a collection of symbols (such as 2, 4,
+ and =), syntax rules that describe how symbols may be combined to form a legal
expression (called a well-formed formula or wff, pronounced “whiff”), some starting wifs
called axioms, and inference rules that describe how theorems may be derived (proved)
from the axioms. A theorem is a mathematical fact such as 2 + 2 = 4. Strictly speaking,
even an obvious fact such as this must be proved from axioms to be formally acceptable
to a mathematician.

ix

X PREFACE

conjunction with standard textbooks, Metamath can guide you step-by-step
towards an understanding of abstract mathematics from a very rigorous
viewpoint, even if you have no formal abstract mathematics background. By
using a single, consistent notation to express proofs, once you grasp its basic
concepts Metamath provides you with the ability to immediately follow and
dissect proofs even in totally unfamiliar areas.

Of course, just being able follow a proof will not necessarily give you an
intuitive familiarity with mathematics. Memorizing the rules of chess does
not give you the ability to appreciate the game of a master, and knowing
how the notes on a musical score map to piano keys does not give you the
ability to hear in your head how it would sound. But each of these can be a
first step.

Metamath allows you to explore proofs in the sense that you can see the
theorem referenced at any step expanded in as much detail as you want,
right down to the underlying axioms of logic and set theory (in the case of
the set theory database provided). While Metamath will not replace the
higher-level understanding that can only be acquired through exercises and
hard work, being able to see how gaps in a proof are filled in can give you
increased confidence that can speed up the learning process and save you
time when you get stuck.

The Metamath language breaks down a mathematical proof into its
tiniest possible parts. These can be pieced together, like interlocking pieces
in a puzzle, only in a way that produces correct and absolutely rigorous
mathematics.

The nature of Metamath enforces very precise mathematical thinking,
similar to that involved in writing a computer program. A crucial difference,
though, is that once a proof is verified (by the Metamath program) to be
correct, it is definitely correct; it can never have a hidden “bug.” After
getting used to the kind of rigor and accuracy provided by Metamath, you
might even be tempted to adopt the attitude that a proof should never be
considered correct until it has been verified by a computer, just as you would
not completely trust a manual calculation until you have verified it on a
calculator.

My goal for Metamath was a system for describing and verifying mathe-
matics that is completely universal yet conceptually as simple as possible.
In approaching mathematics from an axiomatic, formal viewpoint, I wanted
Metamath to be able to handle almost any mathematical system, not nec-
essarily with ease, but at least in principle and hopefully in practice. I
wanted it to verify proofs with absolute rigor, and for this reason Metamath
is what might be thought of as a “compile-only” language rather than an
algorithmic or Turing-machine language (Pascal, C, Prolog, Mathematica,
etc.). In other words, a database written in the Metamath language doesn’t
“do” anything; it merely exhibits mathematical knowledge and permits this
knowledge to be verified as being correct. A program in an algorithmic

PREFACE xi

language can potentially have hidden bugs as well as possibly being hard to
understand. But each token in a Metamath database must be consistent with
the database’s earlier contents according to simple, fixed rules. If a database
is verified to be correctﬂ then the mathematical content is correct if the
verifier is correct and the axioms are correct. The verification program could
be incorrect, but the verification algorithm is relatively simple (making it
unlikely to be implemented incorrectly by the Metamath program), and there
are over a dozen Metamath database verifiers written by different people
in different programming languages (so these different verifiers can act as
multiple reviewers of a database). The most-used Metamath database, the
Metamath Proof Explorer (aka set.mm), is currently verified by four different
Metamath verifiers written by four different people in four different languages,
including the original Metamath program described in this book. The only
“bugs” that can exist are in the statement of the axioms, for example if
the axioms are inconsistent (a famous problem shown to be unsolvable by
Godel’s incompleteness theorem). However, real mathematical systems have
very few axioms, and these can be carefully studied. All of this provides
extraordinarily high confidence that the verified database is in fact correct.

The Metamath program doesn’t prove theorems automatically but is
designed to verify proofs that you supply to it. The underlying Metamath
language is completely general and has no built-in, preconceived notions
about your formal system, its logic or its syntax. For constructing proofs,
the Metamath program has a Proof Assistant which helps you fill in some
of a proof step’s details, shows you what choices you have at any step, and
verifies the proof as you build it; but you are still expected to provide the
proof.

There are many other programs that can process or generate information
in the Metamath language, and more continue to be written. This is in
part because the Metamath language itself is very simple and intentionally
easy to automatically process. Some programs, such as mmj2, include a
proof assistant that can automate some steps beyond what the Metamath
program can do. Mario Carneiro has developed an algorithm for converting
proofs from the OpenTheory interchange format, which can be translated
to and from any of the HOL family of proof languages (HOL4, HOL Light,
ProofPower, and Isabelle), into the Metamath language [I0]. Daniel Whalen
has developed Holophrasm, which can automatically prove many Metamath
proofs using machine learning approaches (including multiple neural net-
works)[72]. However, a discussion of these other programs is beyond the
scope of this book.

Like most computer languages, the Metamath language uses the standard
(Ascin) characters on a computer keyboard, so it cannot directly represent
many of the special symbols that mathematicians use. A useful feature

3This includes verification that a sequential list of proof steps results in the specified
theorem.

xii PREFACE

of the Metamath program is its ability to convert its notation into the
ETEX typesetting language. This feature lets you convert the AsSCII tokens
you’ve defined into standard mathematical symbols, so you end up with
symbols and formulas you are familiar with instead of somewhat cryptic ASCII
representations of them. The Metamath program can also generate HTML,
making it easy to view results on the web and to see related information by
using hypertext links.

Metamath is probably conceptually different from anything you’ve seen
before and some aspects may take some getting used to. This book will help
you decide whether Metamath suits your specific needs.

Setting Your Expectations

It is important for you to understand what Metamath is and is not. As
mentioned, the Metamath program is not an automated theorem prover
but rather a proof verifier. Developing a database can be tedious, hard
work, especially if you want to make the proofs as short as possible, but it
becomes easier as you build up a collection of useful theorems. The purpose
of Metamath is simply to document existing mathematics in an absolutely
rigorous, computer-verifiable way, not to aid directly in the creation of new
mathematics. It also is not a magic solution for learning abstract mathematics,
although it may be helpful to be able to actually see the implied rigor behind
what you are learning from textbooks, as well as providing hints to work out
proofs that you are stumped on.

As of this writing, a sizable set theory database has been developed to
provide a foundation for many fields of mathematics, but much more work
would be required to develop useful databases for specific fields.

Metamath “knows no math;” it just provides a framework in which to
express mathematics. Its language is very small. You can define two kinds
of symbols, constants and variables. The only thing Metamath knows how
to do is to substitute strings of symbols for the variables in an expression
based on instructions you provide it in a proof, subject to certain constraints
you specify for the variables. Even the decimal representation of a number
is merely a string of certain constants (digits) which together, in a specific
context, correspond to whatever mathematical object you choose to define for
it; unlike other computer languages, there is no actual number stored inside
the computer. In a proof, you in effect instruct Metamath what symbol
substitutions to make in previous axioms or theorems and join a sequence
of them together to result in the desired theorem. This kind of symbol
manipulation captures the essence of mathematics at a preaxiomatic level.

Metamath and Mathematical Literature

In advanced mathematical literature, proofs are usually presented in the
form of short outlines that often only an expert can follow. This is partly out

PREFACE xiii

of a desire for brevity, but it would also be unwise (even if it were practical)
to present proofs in complete formal detail, since the overall picture would
be lost.

A solution I envision that would allow mathematics to remain acceptable
to the expert, yet increase its accessibility to non-specialists, consists of a
combination of the traditional short, informal proof in print accompanied
by a complete formal proof stored in a computer database. In an analogy
with a computer program, the informal proof is like a set of comments that
describe the overall reasoning and content of the proof, whereas the computer
database is like the actual program and provides a means for anyone, even
a non-expert, to follow the proof in as much detail as desired, exploring it
back through layers of theorems (like subroutines that call other subroutines)
all the way back to the axioms of the theory. In addition, the computer
database would have the advantage of providing absolute assurance that the
proof is correct, since each step can be verified automatically.

There are several other approaches besides Metamath to a project such
as this. Section [[.3.4] discusses some of these.

To us, a noble goal would be a database with hundreds of thousands of
theorems and their computer-verifiable proofs, encompassing a significant
fraction of known mathematics and available for instant access. These
would be fully verified by multiple independently-implemented verifiers, to
provide extremely high confidence that the proofs are completely correct.
The database would allow people to investigate whatever details they were
interested in, so that they could confirm whatever portions they wished.
Whether or not Metamath is an appropriate choice remains to be seen, but
in principle we believe it is sufficient.

Formalism

Over the past fifty years, a group of French mathematicians working col-
lectively under the pseudonym of Bourbaki have co-authored a series of
monographs that attempt to rigorously and consistently formalize large bod-
ies of mathematics from foundations. On the one hand, certainly such an
effort has its merits; on the other hand, the Bourbaki project has been criti-
cized for its “scholasticism” and “hyperaxiomatics” that hide the intuitive
steps that lead to the results [3 p. 191].

Metamath unabashedly carries this philosophy to its extreme and no
doubt is subject to the same kind of criticism. Nonetheless I think that in
conjunction with conventional approaches to mathematics Metamath can
serve a useful purpose. The Bourbaki approach is essentially pedagogic,
requiring the reader to become intimately familiar with each detail in a very
large hierarchy before he or she can proceed to the next step. The difference
with Metamath is that the “reader” (user) knows that all details are contained
in its computer database, available as needed; it does not demand that the
user know everything but conveniently makes available those portions that

xiv PREFACE

are of interest. As the body of all mathematical knowledge grows larger and
larger, no one individual can have a thorough grasp of its entirety. Metamath
can finalize and put to rest any questions about the validity of any part of it
and can make any part of it accessible, in principle, to a non-specialist.

A Personal Note

Why did I develop Metamath? I enjoy abstract mathematics, but I sometimes
get lost in a barrage of definitions and start to lose confidence that my proofs
are correct. Or I reach a point where I lose sight of how anything I'm doing
relates to the axioms that a theory is based on and am sometimes suspicious
that there may be some overlooked implicit axiom accidentally introduced
along the way (as happened historically with Euclidean geometry, whose
omission of Pasch’s axiom went unnoticed for 2000 years [I5], p. 160]!). I'm
also somewhat lazy and wish to avoid the effort involved in re-verifying
the gaps in informal proofs “left to the reader;” I prefer to figure them out
just once and not have to go through the same frustration a year from now
when I've forgotten what I did. Metamath provides better recovery of my
efforts than scraps of paper that I can’t decipher anymore. But mostly I find
very appealing the idea of rigorously archiving mathematical knowledge in a
computer database, providing precision, certainty, and elimination of human
error.

Note on Bibliography and Index

The Bibliography usually includes the Library of Congress classification for
a work to make it easier for you to find it in on a university library shelf.
The Index has author references to pages where their works are cited, even
though the authors’ names may not appear on those pages.

Acknowledgments

Acknowledgments are first due to my wife, Deborah (who passed away on
September 4, 1998), for critiquing the manuscript but most of all for her
patience and support. I also wish to thank Joe Wright, Richard Becker,
Clarke Evans, Buddha Buck, and Jeremy Henty for helpful comments. Any
errors, omissions, and other shortcomings are of course my responsibility.

Note Added June 22, 2005

The original, unpublished version of this book was written in 1997 and
distributed via the web. The present edition has been updated to reflect
the current Metamath program and databases, as well as more current URLS
for Internet sites. Thanks to Josh Purinton, One Hand Clapping, Mel L.
O’Cat, and Roy F. Longton for pointing out typographical and other errors.
I have also benefitted from numerous discussions with Raph Levien, who

PREFACE XV

has extended Metamath’s philosophy of rigor to result in his Ghilbert proof
language (http://ghilbert.org).

Robert (Bob) Solovay communicated a new result of A. R. D. Mathias on
the system of Bourbaki, and the text has been updated accordingly (p. .

Bob also pointed out a clarification of the literature regarding category
theory and inaccessible cardinals (p. , and a misleading statement was
removed from the text. Specifically, contrary to a statement in previous
editions, it is possible to express “There is a proper class of inaccessible
cardinals” in the language of ZFC. This can be done as follows: “For every
set x there is an inaccessible cardinal « such that « is not in z.” Bob writesf

This axiom is how Grothendieck presents category theory.
To each inaccessible cardinal x one associates a Grothendieck
universe U(x). U(x) consists of those sets which lie in a transitive
set of cardinality less than k. Instead of the “category of all
groups,” one works relative to a universe [considering the category
of groups of cardinality less than x]. Now the category whose
objects are all categories “relative to the universe U(k)” will be
a category not relative to this universe but to the next universe.

All of the things category theorists like to do can be done
in this framework. The only controversial point is whether the
Grothendieck axiom is too strong for the needs of category the-
orists. Mac Lane argues that “one universe is enough” and
Feferman has argued that one can get by with ordinary ZFC.
I don’t find Feferman’s arguments persuasive. Mac Lane may
be right, but when I think about category theory I do it a la
Grothendieck.

By the way Mizar adds the axiom “there is a proper class of
inaccessibles” precisely so as to do category theory.

The most current information on the Metamath program and databases
can always be found at http://metamath.org.

Note Added June 24, 2006

The Metamath spec was restricted slightly to make parsers easier to write.
See the footnote on p.

Note Added March 10, 2007

I am grateful to Anthony Williams for writing the IWTEX package called
realref.sty and contributing it to the public domain. This package allows
the internal hyperlinks in a PDF file to anchor to specific page numbers
instead of just section titles, making the navigation of the PDF file for this
book much more pleasant and “logical.”

4Private communication, Nov. 30, 2002.

http://ghilbert.org
http://metamath.org

xvi PREFACE

A typographical error found by Martin Kiselkov was corrected. A confus-
ing remark about unification was deleted per suggestion of Mel O’Cat.

Note Added May 27, 2009

Several typos found by Kim Sparre were corrected. A note was added that
the Poincaré conjecture has been proved (p. .

Note Added Nov. 17, 2014

The statement of the Schroder—Bernstein theorem was corrected in Sec-
tion Thanks to Bob Solovay for pointing out the error.

Note Added May 25, 2016
Thanks to Jerry James for correcting 16 typos.

Note Added February 25, 2019

David A. Wheeler made a large number of improvements and updates, in
coordination with Norman Megill. The predicate calculus axioms were
renumbered, and the text makes it clear that they are based on Tarski’s
system S2; the one slight deviation in axiom ax-6 is explained and justi-
fied. The real and complex number axioms were modified to be consistent
with set.mm. Long-awaited specification changes “1-8” were made, which
clarified previously ambiguous points. Some errors in the text involving $f
and $d statements were corrected (the spec was correct, but the in-book
explanations unintentionally contradicted the spec). We now have a system
for automatically generating narrow PDFs, so that those with smartphones
can have easy access to the current version of this document. A new section
on deduction was added; it discusses the standard deduction theorem, the
weak deduction theorem, deduction style, and natural deduction. Many
minor corrections (too numerous to list here) were also made.

Note Added March 7, 2019

This added a description of the Matamath language syntax in Extended
Backus—Naur Form (EBNF) in Appendix |[El added a brief explanation about
typecodes, inserted more examples in the deduction section, and added a
variety of smaller improvements.

Note Added April 7, 2019

This version clarified the proper substitution notation, improved the discus-
sion on the weak deduction theorem and natural deduction, documented
the undo command, updated the information on write source, changed

PREFACE xvii

the typecode from set to setvar to be consistent with the current version
of set.mm, added more documentation about comment markup (e.g., docu-
mented how to create headings), and clarified the differences between various
assertion forms (in particular deduction form).

Note Added June 2, 2019

This version fixes a large number of small issues reported by Benoit Jubin,
such as editorial issues and the need to document verify markup (thank
you!). This version also includes specific examples of forms (deduction form,
inference form, and closed form).

xviil PREFACE

Chapter 1

Introduction

I.M.: No, no. There’s nothing subjective about it! Everybody
knows what a proof is. Just read some books, take courses from a
competent mathematician, and you’ll catch on.

Student: Are you sure?

ILM.: Well—it is possible that you won’t, if you don’t have
any aptitude for it. That can happen, too.

Student: Then you decide what a proof is, and if I don’t learn
to decide in the same way, you decide I don’t have any aptitude.

ILM.: If not me, then who?

“THE IDEAL MATHEMATICIAN” |I|

Brilliant mathematicians have discovered almost unimaginably profound
results that rank among the crowning intellectual achievements of mankind.
However, there is a sense in which modern abstract mathematics is behind
the times, stuck in an era before computers existed. While no one disputes
the remarkable results that have been achieved, communicating these results
in a precise way to the uninitiated is virtually impossible. To describe these
results, a terse informal language is used which despite its elegance is very
difficult to learn. This informal language is not imprecise, far from it, but
rather it often has omitted detail and symbols with hidden context that
are implicitly understood by an expert but few others. Extremely complex
technical meanings are associated with innocent-sounding English words such
as “‘compact” and “measurable” that barely hint at what is actually being
said. Anyone who does not keep the precise technical meaning constantly in
mind is bound to fail, and acquiring the ability to do this can be achieved only
through much practice and hard work. Only the few who complete the painful
learning experience can join the small in-group of pure mathematicians. The
informal language effectively cuts off the true nature of their knowledge from
most everyone else.

L[i5], p. 40.

2 CHAPTER 1. INTRODUCTION

Metamath makes abstract mathematics more concrete. It allows a com-
puter to keep track of the complexity associated with each word or symbol
with absolute rigor. You can explore this complexity at your leisure, to
whatever degree you desire. Whether or not you believe that concepts such
as infinity actually “exist” outside of the mind, Metamath lets you get to
the foundation for what’s really being said.

Metamath also enables completely rigorous and thorough proof verifica-
tion. Its language is simple enough so that you don’t have to rely on the
authority of experts but can verify the results yourself, step by step. If you
want to attempt to derive your own results, Metamath will not let you make
a mistake in reasoning. Even professional mathematicians make mistakes;
Metamath makes it possible to thoroughly verify that proofs are correct.

Metamath is a computer language and an associated computer program for
archiving, verifying, and studying mathematical proofs at a very detailed level.
The Metamath language describes formal mathematical systems and expresses
proofs of theorems in those systems. Such a language is called a metalanguage
by mathematicians. The Metamath program is a computer program that
verifies proofs expressed in the Metamath language. The Metamath program
does not have the built-in ability to make logical inferences; it just makes a
series of symbol substitutions according to instructions given to it in a proof
and verifies that the result matches the expected theorem. It makes logical
inferences based only on rules of logic that are contained in a set of axioms,
or first principles, that you provide to it as the starting point for proofs.

The complete specification of the Metamath language is only four pages
long (Section p- . Its simplicity may at first make you wonder how it
can do much of anything at all. But in fact the kinds of symbol manipulations
it performs are the ones that are implicitly done in all mathematical systems
at the lowest level. You can learn it relatively quickly and have complete
confidence in any mathematical proof that it verifies. On the other hand, it
is powerful and general enough so that virtually any mathematical theory,
from the most basic to the deeply abstract, can be described with it.

Although in principle Metamath can be used with any kind of mathe-
matics, it is best suited for abstract or “pure” mathematics that is mostly
concerned with theorems and their proofs, as opposed to the kind of math-
ematics that deals with the practical manipulation of numbers. Examples
of branches of pure mathematics are logicE| set theoryﬂ number theoryﬁ

2Logic is the study of statements that are universally true regardless of the objects
being described by the statements. An example is the statement, “if P implies @, then
either P is false or @ is true.”

3Set theory is the study of general-purpose mathematical objects called “sets,” and
from it essentially all of mathematics can be derived. For example, numbers can be defined
as specific sets, and their properties can be explored using the tools of set theory.

4Number theory deals with the properties of positive and negative integers (whole
numbers).

group theoryﬂ abstract algebraﬂ analysis E] and topologyﬂ Even in physics,
Metamath could be applied to certain branches that make use of abstract
mathematics, such as quantum logic (used to study aspects of quantum
mechanics).

On the other hand, Metamath is less suited to applications that deal
primarily with intensive numeric computations. Metamath does not have
any built-in representation of numbers; instead, a specific string of symbols
(digits) must be syntactically constructed as part of any proof in which an
ordinary number is used. For this reason, numbers in Metamath are best
limited to specific constants that arise during the course of a theorem or its
proof. Numbers are only a tiny part of the world of abstract mathematics.
The exclusion of built-in numbers was a conscious decision to help achieve
Metamath’s simplicity, and there are other software tools if you have dif-
ferent mathematical needs. If you wish to quickly solve algebraic problems,
the computer algebra programs MACSYMA, Mathematica, and Maple are
specifically suited to handling numbers and algebra efficiently. If you wish to
simply calculate numeric or matrix expressions easily, tools such as Octave
may be a better choice.

After learning Metamath’s basic statement types, any technically oriented
person, mathematician or not, can immediately trace any theorem proved in
the language as far back as he or she wants, all the way to the axioms on which
the theorem is based. This ability suggests a non-traditional way of learning
about pure mathematics. Used in conjunction with traditional methods,
Metamath could make pure mathematics accessible to people who are not
sufficiently skilled to figure out the implicit detail in ordinary textbook proofs.
Once you learn the axioms of a theory, you can have complete confidence
that everything you need to understand a proof you are studying is all there,
at your beck and call, allowing you to focus in on any proof step you don’t
understand in as much depth as you need, without worrying about getting
stuck on a step you can’t figure outﬂ

5Group theory studies the properties of mathematical objects called groups that obey
a simple set of axioms and have properties of symmetry that make them useful in many
other fields.

6 Abstract algebra includes group theory and also studies groups with additional
properties that qualify them as “rings” and “fields.” The set of real numbers is a familiar
example of a field.

7 Analysis is the study of real and complex numbers.

80ne area studied by topology are properties that remain unchanged when geometrical
objects undergo stretching deformations; for example a doughnut and a coffee cup each
have one hole (the cup’s hole is in its handle) and are thus considered topologically
equivalent. In general, though, topology is the study of abstract mathematical objects
that obey a certain (surprisingly simple) set of axioms. See, for example, Munkres [48].

90n the other hand, writing proofs in the Metamath language is challenging, requiring
a degree of rigor far in excess of that normally taught to students. In a classroom setting,
I doubt that writing Metamath proofs would ever replace traditional homework exercises
involving informal proofs, because the time needed to work out the details would not allow
a course to cover much material. For students who have trouble grasping the implied

4 CHAPTER 1. INTRODUCTION

Metamath is probably unlike anything you have encountered before. In
this first chapter we will look at the philosophy and use of computers in
mathematics in order to better understand the motivation behind Metamath.
The material in this chapter is not required in order to use Metamath. You
may skip it if you are impatient, but I hope you will find it educational and
enjoyable. If you want to start experimenting with the Metamath program
right away, proceed directly to Chapter [2| (p. . To learn the Metamath
language, skim Chapter [2| then proceed to Chapter 4| (p. .

1.1 Mathematics as a Computer Language

The study of mathematics is apt to commence in disappoint-
ment.. . .

We are told that by its aid the stars are weighted and the billions
of molecules in a drop of water are counted. Yet, like the ghost
of Hamlet’s father, this great science eludes the efforts of our
mental weapons to grasp it.

ALFRED NORTH WHITEHEA]E

1.1.1 Is Mathematics “User-Friendly”?

Suppose you have no formal training in abstract mathematics. But popular
books you've read offer tempting glimpses of this world filled with profound
ideas that have stirred the human spirit. You are not satisfied with the
informal, watered-down descriptions you’ve read but feel it is important to
grasp the underlying mathematics itself to understand its true meaning. It’s
not practical to go back to school to learn it, though; you don’t want to
dedicate years of your life to it. There are many important things in life, and
you have to set priorities for what’s important to you. What would happen
if you tried to pursue it on your own, in your spare time?

After all, you were able to learn a computer programming language such
as Pascal on your own without too much difficulty, even though you had no
formal training in computers. You don’t claim to be an expert in software
design, but you can write a passable program when necessary to suit your
needs. Even more important, you know that you can look at anyone else’s
Pascal program, no matter how complex, and with enough patience figure
out exactly how it works, even though you are not a specialist. Pascal allows
you do anything that a computer can do, at least in principle. Thus you

rigor in traditional material, writing a few simple proofs in the Metamath language might
help clarify fuzzy thought processes. Although somewhat difficult at first, it eventually
becomes fun to do, like solving a puzzle, because of the instant feedback provided by the
computer.

10[73], ch. 1.

1.1. MATHEMATICS AS A COMPUTER LANGUAGE)

know you have the ability, in principle, to follow anything that a computer
program can do: you just have to break it down into small enough pieces.

Here’s an imaginary scenario of what might happen if you naively adopted
this same view of abstract mathematics and tried to pick it up on your own,
in a period of time comparable to, say, learning a computer programming
language.

A Non-Mathematician’s Quest for Truth

... my daughters have been studying (chemistry) for several se-
mesters, think they have learned differential and integral calculus
in school, and yet even today don’t know why x -y =1y - x is true.

EDMUND LANDAUF_TI

Minus times minus is plus,
The reason for this we need not discuss.

W. H. AupenNT

We’ll suppose you are a technically oriented professional, perhaps an
engineer, a computer programmer, or a physicist, but probably not a math-
ematician. You consider yourself reasonably intelligent. You did well in
school, learning a variety of methods and techniques in practical mathematics
such as calculus and differential equations. But rarely did your courses get
into anything resembling modern abstract mathematics, and proofs were
something that appeared only occasionally in your textbooks, a kind of
necessary evil that was supposed to convince you of a certain key result.
Most of your homework consisted of exercises that gave you practice in the
techniques, and you were hardly ever asked to come up with a proof of your
own.

You find yourself curious about advanced, abstract mathematics. You
are driven by an inner conviction that it is important to understand and
appreciate some of the most profound knowledge discovered by mankind.
But it seems very hard to learn, something that only certain gifted longhairs
can access and understand. You are frustrated that it seems forever cut off
from you.

Eventually your curiosity drives you to do something about it. You set
for yourself a goal of “really” understanding mathematics: not just how to
manipulate equations in algebra or calculus according to cookbook rules, but
rather to gain a deep understanding of where those rules come from. In fact,
you're not thinking about this kind of ordinary mathematics at all, but about
a much more abstract, ethereal realm of pure mathematics, where famous

11[38], p. vi.
12 As quoted in [20], p. 64.

6 CHAPTER 1. INTRODUCTION

results such as Godel’s incompleteness theorem and Cantor’s different kinds
of infinities reside.

You have probably read a number of popular books, with titles like
Infinity and the Mind [58], on topics such as these. You found them inspiring
but at the same time somewhat unsatisfactory. They gave you a general idea
of what these results are about, but if someone asked you to prove them,
you wouldn’t have the faintest idea of where to begin. Sure, you could give
the same overall outline that you learned from the popular books; and in a
general sort of way, you do have an understanding. But deep down inside,
you know that there is a rigor that is missing, that probably there are many
subtle steps and pitfalls along the way, and ultimately it seems you have to
place your trust in the experts in the field. You don’t like this; you want to
be able to verify these results for yourself.

So where do you go next? As a first step, you decide to look up some of
the original papers on the theorems you are curious about, or better, obtain
some standard textbooks in the field. You look up a theorem you want to
understand. Sure enough, it’s there, but it’s expressed with strange terms
and odd symbols that mean absolutely nothing to you. It might as well be
written in a foreign language you’ve never seen before, whose symbols are
totally alien. You look at the proof, and you haven’t the foggiest notion
what each step means, much less how one step follows from another. Well,
obviously you have a lot to learn if you want to understand this stuff.

You feel that you could probably understand it by going back to college
for another three to six years and getting a math degree. But that does not
fit in with your career and the other things in your life and would serve no
practical purpose. You decide to seek a quicker path. You figure you’ll just
trace your way back to the beginning, step by step, as you would do with a
computer program, until you understand it. But you quickly find that this
is not possible, since you can’t even understand enough to know what you
have to trace back to.

Maybe a different approach is in order—maybe you should start at the
beginning and work your way up. First, you read the introduction to the
book to find out what the prerequisites are. In a similar fashion, you
trace your way back through two or three more books, finally arriving at
one that seems to start at a beginning: it lists the axioms of arithmetic.
“Aha!” you naively think, “This must be the starting point, the source of all
mathematical knowledge.” Or at least the starting point for mathematics
dealing with numbers; you have to start somewhere and have no idea what the
starting point for other mathematics would be. But the word “axioms” looks
promising. So you eagerly read along and work through some elementary
exercises at the beginning of the book. You feel vaguely bothered: these
don’t seem like axioms at all, at least not in the sense that you want to
think of axioms. Axioms imply a starting point from which everything else
can be built up, according to precise rules specified in the axiom system.

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 7

Even though you can understand the first few proofs in an informal way, and
are able to do some of the exercises, it’s hard to pin down precisely what
the rules are. Sure, each step seems to follow logically from the others, but
exactly what does that mean? Is the “logic” just a matter of common sense,
something vague that we all understand but can never quite state precisely?

You've spent a number of years, off and on, programming computers,
and you know that in the case of computer languages there is no question of
what the rules are—they are precise and crystal clear. If you follow them,
your program will work, and if you don’t, it won’t. No matter how complex
a program, it can always be broken down into simpler and simpler pieces,
until you can ultimately identify the bits that are moved around to perform
a specific function. Some programs might require a lot of perseverance to
accomplish this, but if you focus on a specific portion of it, you don’t even
necessarily have to know how the rest of it works. Shouldn’t there be an
analogy in mathematics?

You decide to apply the ultimate test: you ask yourself how a computer
could verify or ensure that the steps in these proofs follow from one another.
Certainly mathematics must be at least as precisely defined as a computer
language, if not more so; after all, computer science itself is based on it. If
you can get a computer to verify these proofs, then you should also be able,
in principle, to understand them yourself in a very crystal clear, precise way.

You're in for a surprise: you can conceive of no way to convert the proofs,
which are in English, to a form that the computer can understand. The
proofs are filled with phrases such as “assume there exists a unique z...”
and “given any y, let z be the number such that...” This isn’t the kind
of logic you are used to in computer programming, where everything, even
arithmetic, reduces to Boolean ones and zeroes if you care to break it down
sufficiently. Even though you think you understand the proofs, there seems
to be some kind of higher reasoning involved rather than precise rules that
define how you manipulate the symbols in the axioms. Whatever it is, it
just isn’t obvious how you would express it to a computer, and the more you
think about it, the more puzzled and confused you get, to the point where
you even wonder whether you really understand it. There’s a lot more to
these axioms of arithmetic than meets the eye.

Nobody ever talked about this in school in your applied math and
engineering courses. You just learned the rules they gave you, not quite
understanding how or why they worked, sometimes vaguely suspicious or
uncertain of them, and through homework problems and osmosis learned
how to present solutions that satisfied the instructor and earned you an “A.”
Rarely did you actually “prove” anything in a rigorous way, and the math
majors who did do stuff like that seemed to be in a different world.

Of course, there are computer algebra programs that can do mathematics,
and rather impressively. They can instantly solve the integrals that you
struggled with in freshman calculus, and do much, much more. But when

8 CHAPTER 1. INTRODUCTION

you look at these programs, what you see is a big collection of algorithms
and techniques that evolved and were added to over time, along with some
basic software that manipulates symbols. Each algorithm that is built in is
the result of someone’s theorem whose proof is omitted; you just have to
trust the person who proved it and the person who programmed it in and
hope there are no bugs. Somehow this doesn’t seem to be the essence of
mathematics. Although computer algebra systems can generate theorems
with amazing speed, they can’t actually prove a single one of them.

After some puzzlement, you revisit some popular books on what mathe-
matics is all about. Somewhere you read that all of mathematics is actually
derived from something called “set theory.” This is a little confusing, because
nowhere in the book that presented the axioms of arithmetic was there any
mention of set theory, or if there was, it seemed to be just a tool that helps
you describe things better—the set of even numbers, that sort of thing. If
set theory is the basis for all mathematics, then why are additional axioms
needed for arithmetic?

Something is wrong but you’re not sure what. One of your friends is a
pure mathematician. He knows he is unable to communicate to you what he
does for a living and seems to have little interest in trying. You do know that
for him, proofs are what mathematics is all about. You ask him what a proof
is, and he essentially tells you that, while of course it’s based on logic, really
it’s something you learn by doing it over and over until you pick it up. He
refers you to a book, How to Read and Do Proofs [63]. Although this book
helps you understand traditional informal proofs, there is still something
missing you can’t seem to pin down yet.

You ask your friend how you would go about having a computer verify a
proof. At first he seems puzzled by the question; why would you want to do
that? Then he says it’s not something that would make any sense to do, but
he’s heard that you’d have to break the proof down into thousands or even
millions of individual steps to do such a thing, because the reasoning involved
is at such a high level of abstraction. He says that maybe it’s something you
could do up to a point, but the computer would be completely impractical
once you get into any meaningful mathematics. There, the only way you can
verify a proof is by hand, and you can only acquire the ability to do this
by specializing in the field for a couple of years in grad school. Anyway, he
thinks it all has to do with set theory, although he has never taken a formal
course in set theory but just learned what he needed as he went along.

You are intrigued and amazed. Apparently a mathematician can grasp
as a single concept something that would take a computer a thousand or a
million steps to verify, and have complete confidence in it. Each one of these
thousand or million steps must be absolutely correct, or else the whole proof
is meaningless. If you added a million numbers by hand, would you trust
the result? How do you really know that all these steps are correct, that
there isn’t some subtle pitfall in one of these million steps, like a bug in a

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 9

computer program? After all, you've read that famous mathematicians have
occasionally made mistakes, and you certainly know you’ve made your share
on your math homework problems in school.

You recall the analogy with a computer program. Sure, you can under-
stand what a large computer program such as a word processor does, as a
single high-level concept or a small set of such concepts, but your ability to
understand it in no way ensures that the program is correct and doesn’t have
hidden bugs. Even if you wrote the program yourself you can’t really know
this; most large programs that you've written have had bugs that crop up at
some later date, no matter how careful you tried to be while writing them.

OK, so now it seems the reason you can’t figure out how to make a
computer verify proofs is because each step really corresponds to a million
small steps. Well, you say, a computer can do a million calculations in a
second, so maybe it’s still practical to do. Now the puzzle becomes how
to figure out what the million steps are that each English-language step
corresponds to. Your mathematician friend hasn’t a clue, but suggests that
maybe you would find the answer by studying set theory. Actually, your
friend thinks you're a little off the wall for even wondering such a thing. For
him, this is not what mathematics is all about.

The subject of set theory keeps popping up, so you decide it’s time to
look it up.

You decide to start off on a careful footing, so you start reading a couple
of very elementary books on set theory. A lot of it seems pretty obvious,
like intersections, subsets, and Venn diagrams. You thumb through one of
the books; nowhere is anything about axioms mentioned. The other book
relegates to an appendix a brief discussion that mentions a set of axioms
called “Zermelo—Fraenkel set theory” and states them in English. You look
at them and have no idea what they really mean or what you can do with
them. The comments in this appendix say that the purpose of mentioning
them is to expose you to the idea, but imply that they are not necessary for
basic understanding and that they are really the subject matter of advanced
treatments where fine points such as a certain paradox (Russell’s parado;ﬁ)
are resolved. Wait a minute—shouldn’t the axioms be a starting point, not
an ending point? If there are paradoxes that arise without the axioms, how
do you know you won’t stumble across one accidentally when using the
informal approach?

And nowhere do these books describe how “all of mathematics can be
derived from set theory” which by now you’ve heard a few times.

You find a more advanced book on set theory. This one actually lists
the axioms of ZF set theory in plain English on page one. Now you think
your quest has ended and you've finally found the source of all mathematical

I3Russell’s paradox assumes that there exists a set S that is a collection of all sets that
don’t contain themselves. Now, either S contains itself or it doesn’t. If it contains itself, it
contradicts its definition. But if it doesn’t contain itself, it also contradicts its definition.
Russell’s paradox is resolved in ZF set theory by denying that such a set S exists.

10 CHAPTER 1. INTRODUCTION

knowledge; you just have to understand what it means. Here, in one place,
is the basis for all of mathematics! You stare at the axioms in awe, puzzle
over them, memorize them, hoping that if you just meditate on them long
enough they will become clear. Of course, you haven’t the slightest idea how
the rest of mathematics is “derived” from them; in particular, if these are
the axioms of mathematics, then why do arithmetic, group theory, and so on
need their own axioms?

You start reading this advanced book carefully, pondering the meaning
of every word, because by now you’re really determined to get to the bottom
of this. The first thing the book does is explain how the axioms came about,
which was to resolve Russell’s paradox. In fact that seems to be the main
purpose of their existence; that they supposedly can be used to derive all of
mathematics seems irrelevant and is not even mentioned. Well, you go on.
You hope the book will explain to you clearly, step by step, how to derive
things from the axioms. After all, this is the starting point of mathematics,
like a book that explains the basics of a computer programming language.
But something is missing. You find you can’t even understand the first proof
or do the first exercise. Symbols such as 9 and V permeate the page without
any mention of where they came from or how to manipulate them; the author
assumes you are totally familiar with them and doesn’t even tell you what
they mean. By now you know that 3 means “there exists” and V means “for
all,” but shouldn’t the rules for manipulating these symbols be part of the
axioms? You still have no idea how you could even describe the axioms to a
computer.

Certainly there is something much different here from the technical
literature you're used to reading. A computer language manual almost
always explains very clearly what all the symbols mean, precisely what they
do, and the rules used for combining them, and you work your way up from
there.

After glancing at four or five other such books, you come to the realization
that there is another whole field of study that you need just to get to the
point at which you can understand the axioms of set theory. The field is
called “logic.” In fact, some of the books did recommend it as a prerequisite,
but it just didn’t sink in. You assumed logic was, well, just logic, something
that a person with common sense intuitively understood. Why waste your
time reading boring treatises on symbolic logic, the manipulation of 1’s and
0’s that computers do, when you already know that? But this is a different
kind of logic, quite alien to you. The subject of NAND and NOR gates is not
even touched upon or in any case has to do with only a very small part of
this field.

So your quest continues. Skimming through the first couple of introduc-
tory books, you get a general idea of what logic is about and what quantifiers
(“for all,” “there exists”) mean, but you find their examples somewhat trivial
and mildly annoying (“all dogs are animals,” “some animals are dogs,” and

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 11

such). But all you want to know is what the rules are for manipulating the
symbols so you can apply them to set theory. Some formulas describing the
relationships among quantifiers (3 and V) are listed in tables, along with
some verbal reasoning to justify them. Presumably, if you want to find out
if a formula is correct, you go through this same kind of mental reasoning
process, possibly using images of dogs and animals. Intuitively, the formulas
seem to make sense. But when you ask yourself, “What are the rules I need
to get a computer to figure out whether this formula is correct?”, you still
don’t know. Certainly you don’t ask the computer to imagine dogs and
animals.

You look at some more advanced logic books. Many of them have
an introductory chapter summarizing set theory, which turns out to be a
prerequisite. You need logic to understand set theory, but it seems you also
need set theory to understand logic! These books jump right into proving
rather advanced theorems about logic, without offering the faintest clue
about where the logic came from that allows them to prove these theorems.

Luckily, you come across an elementary book of logic that, halfway
through, after the usual truth tables and metaphors, presents in a clear,
precise way what you’ve been looking for all along: the axioms! They’re
divided into propositional calculus (also called sentential logic) and predicate
calculus (also called first-order logic), with rules so simple and crystal clear
that now you can finally program a computer to understand them. Indeed,
they’re no harder than learning how to play a game of chess. As far as what
you seem to need is concerned, the whole book could have been written in
five pages!

Now you think you’ve found the ultimate source of mathematical truth.
So—the axioms of mathematics consist of these axioms of logic, together
with the axioms of ZF set theory. (By now you’ve also been able to figure
out how to translate the ZF axioms from English into the actual symbols of
logic which you can now manipulate according to precise, easy-to-understand
rules.)

Of course, you still don’t understand how “all of mathematics can be
derived from set theory,” but maybe this will reveal itself in due course.

You eagerly set out to program the axioms and rules into a computer and
start to look at the theorems you will have to prove as the logic is developed.
All sorts of important theorems start popping up: the deduction theorem,
the substitution theorem, the completeness theorem of propositional calculus,
the completeness theorem of predicate calculus. Uh-oh, there seems to be
trouble. They all get harder and harder, and not one of them can be derived
with the axioms and rules of logic you've just been handed. Instead, they
all require “metalogic” for their proofs, a kind of mixture of logic and set
theory that allows you to prove things about the axioms and theorems of
logic rather than with them.

You plow ahead anyway. A month later, you’ve spent much of your

12 CHAPTER 1. INTRODUCTION

free time getting the computer to verify proofs in propositional calculus.
You've programmed in the axioms, but you've also had to program in the
deduction theorem, the substitution theorem, and the completeness theorem
of propositional calculus, which by now you’ve resigned yourself to treating
as rather complex additional axioms, since they can’t be proved from the
axioms you were given. You can now get the computer to verify and even
generate complete, rigorous, formal proofs. Never mind that they may have
100,000 steps—at least now you can have complete, absolute confidence in
them. Unfortunately, the only theorems you have proved are pretty trivial
and you can easily verify them in a few minutes with truth tables, if not by
inspection.

It looks like your mathematician friend was right. Getting the computer
to do serious mathematics with this kind of rigor seems almost hopeless. Even
worse, it seems that the further along you get, the more “axioms” you have
to add, as each new theorem seems to involve additional “metamathematical”
reasoning that hasn’t been formalized, and none of it can be derived from
the axioms of logic. Not only do the proofs keep growing exponentially as
you get further along, but the program to verify them keeps getting bigger
and bigger as you program in more “metatheorems.”E The bugs that have
cropped up so far have already made you start to lose faith in the rigor you
seem to have achieved, and you know it’s just going to get worse as your
program gets larger.

1.1.2 Mathematics and the Non-Specialist

A real proof is not checkable by a machine, or even by any
mathematician not privy to the gestalt, the mode of thought of
the particular field of mathematics in which the proof is located.

Davis AND HErsH [[9]

The bulk of abstract or theoretical mathematics is ordinarily outside
the reach of anyone but a few specialists in each field who have completed
the necessary difficult internship in order to enter its coterie. The typical
intelligent layperson has no reasonable hope of understanding much of it,
nor even the specialist mathematician of understanding other fields. It is
like a foreign language that has no dictionary to look up the translation; the
only way you can learn it is by living in the country for a few years. It is
argued that the effort involved in learning a specialty is a necessary process

14 A metatheorem is usually a statement that is too general to be directly provable in a
theory. For example, “if n1, na, and n3 are integers, then nj + ng + n3 is an integer” is a
theorem of number theory. But “for any integer £ > 1, if n1,...,ng are integers, then
n1 + ...+ ng is an integer” is a metatheorem, in other words a family of theorems, one
for every k. The reason it is not a theorem is that the general sum ni + ...+ ny (as a
function of k) is not an operation that can be defined directly in number theory.

15[15], p. 354.

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 13

for acquiring a deep understanding. Of course, this is almost certainly true
if one is to make significant contributions to a field; in particular, “doing”
proofs is probably the most important part of a mathematician’s training.
But is it also necessary to deny outsiders access to it? Is it necessary that
abstract mathematics be so hard for a layperson to grasp?

A computer normally is of no help whatsoever. Most published proofs
are actually just series of hints written in an informal style that requires
considerable knowledge of the field to understand. These are the “real
proofs” referred to by Davis and Hersh. There is an implicit understanding
that, in principle, such a proof could be converted to a complete formal
proof. However, it is said that no one would ever attempt such a conversion,
even if they could, because that would presumably require millions of steps
(Section [1.1.3). Unfortunately the informal style automatically excludes the
understanding of the proof by anyone who hasn’t gone through the necessary
apprenticeship. The best that the intelligent layperson can do is to read
popular books about deep and famous results; while this can be helpful, it
can also be misleading, and the lack of detail usually leaves the reader with
no ability whatsoever to explore any aspect of the field being described.

The statements of theorems often use sophisticated notation that makes
them inaccessible to the non-specialist. For a non-specialist who wants to
achieve a deeper understanding of a proof, the process of tracing definitions
and lemmas back through their hierarchy quickly becomes confusing and
discouraging. Textbooks are usually written to train mathematicians or to
communicate to people who are already mathematicians, and large gaps in
proofs are often left as exercises to the reader who is left at an impasse if he
or she becomes stuck.

I believe that eventually computers will enable non-specialists and even
intelligent laypersons to follow almost any mathematical proof in any field.
Metamath is an attempt in that direction. If all of mathematics were as easily
accessible as a computer programming language, I could envision computer
programmers and hobbyists who otherwise lack mathematical sophistication
exploring and being amazed by the world of theorems and proofs in obscure
specialties, perhaps even coming up with results of their own. A tremendous
advantage would be that anyone could experiment with conjectures in any
field—the computer would offer instant feedback as to whether an inference
step was correct.

Mathematicians sometimes have to put up with the annoyance of cranks
who lack a fundamental understanding of mathematics but insist that their
“proofs” of, say, Fermat’s Last Theorem be taken seriously. I think part of the
problem is that these people are misled by informal mathematical language,
treating it as if they were reading ordinary expository English and failing
to appreciate the implicit underlying rigor. Such cranks are rare in the
field of computers, because computer languages are much more explicit, and
ultimately the proof is in whether a computer program works or not. With

14 CHAPTER 1. INTRODUCTION

easily accessible computer-based abstract mathematics, a mathematician
could say to a crank, “don’t bother me until you’ve demonstrated your claim
on the computer!”

1.1.3 An Impossible Dream?

Even quite basic theorems would demand almost unbelievably vast
books to display their proofs.

ROBERT E. EpwarDdIY

Oh, of course no one ever really does it. It would take forever!
You just show that you could do it, that’s sufficient.

“THE IDEAL MATHEMATICIAN” E]

There is a theorem in the primitive notation of set theory that
corresponds to the arithmetic theorem ‘1000 4 2000 = 3000°. The
formula would be forbiddingly long. .. even if [one] knows the
definitions and is asked to simplify the long formula according
to them, chances are he will make errors and arrive at some
incorrect result.

Hao WandT¥

The Principia Mathematica was the crowning achievement of the
formalists. It was also the deathblow of the formalist view.. .. [Rus-
sell] failed, in three enormous volumes, to get beyond the elemen-
tary facts of arithmetic. He showed what can be done in principle
and what cannot be done in practice. If the mathematical pro-
cess were really one of strict, logical progression, we would still
be counting our fingers.... One theoretician estimates. . .that a
demonstration of one of Ramanujan’s conjectures assuming set
theory and elementary analysis would take about two thousand
pages; the length of a deduction from first principles is nearly
inconceivable. . . The probabilists argue that. .. any very long proof
can at best be viewed as only probably correct. . .

RICHARD DE MirLLo ET. AL[D]

R
—
S
5 !

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 15

A number of writers have conveyed the impression that the kind of
absolute rigor provided by Metamath is an impossible dream, suggesting
that a complete, formal verification of a typical theorem would take millions
of steps in untold volumes of books. Even if it could be done, the thinking
sometimes goes, all meaning would be lost in such a monstrous, tedious
verification.

These writers assume, however, that in order to achieve the kind of
complete formal verification they desire one must break down a proof into
individual primitive steps that make direct reference to the axioms. This
is not necessary. There is no reason not to make use of previously proved
theorems rather than proving them over and over.

Just as important, definitions can be introduced along the way, allowing
very complex formulas to be represented with few symbols. Not doing this
can lead to absurdly long formulas. For example, the mere statement of
Gobdel’s incompleteness theorem, which can be expressed with a small number
of defined symbols, would require about 20,000 primitive symbols to express
itm An extreme example is Bourbaki’s language for set theory, which
requires 4,523,659,424,929 symbols plus 1,179,618,517,981 disambiguatory
links (lines connecting symbol pairs, usually drawn below or above the
formula) to express the number “one” [40].

A hierarchy of theorems and definitions permits an exponential growth
in the formula sizes and primitive proof steps to be described with only a
linear growth in the number of symbols used. Of course, this is how ordinary
informal mathematics is normally done anyway, but with Metamath it can
be done with absolute rigor and precision.

1.1.4 Beauty

No one shall be able to drive us from the paradise that Cantor
has created for us.

DaviD HILBERTP-_TI

Mathematics possesses not only truth, but some supreme beauty
—a beauty cold and austere, like that of a sculpture.

BERTRAND RuUsseLI?]

Euclid alone has looked on Beauty bare.

EDNA MILLAYZE)

20George S. Boolos, lecture at Massachusetts Institute of Technology, spring 1990.
21 As quoted in [47], p. 131.

22160).

23 As quoted in [15], p. 150.

16 CHAPTER 1. INTRODUCTION

For most people, abstract mathematics is distant, strange, and incom-
prehensible. Many popular books have tried to convey some of the sense of
beauty in famous theorems. But even an intelligent layperson is left with only
a general idea of what a theorem is about and is hardly given the tools needed
to make use of it. Traditionally, it is only after years of arduous study that
one can grasp the concepts needed for deep understanding. Metamath allows
you to approach the proof of the theorem from a quite different perspective,
peeling apart the formulas and definitions layer by layer until an entirely
different kind of understanding is achieved. Every step of the proof is there,
pieced together with absolute precision and instantly available for inspection
through a microscope with a magnification as powerful as you desire.

A proof in itself can be considered an object of beauty. Constructing
an elegant proof is an art. Once a famous theorem has been proved, often
considerable effort is made to find simpler and more easily understood
proofs. Creating and communicating elegant proofs is a major concern of
mathematicians. Metamath is one way of providing a common language for
archiving and preserving this information.

The length of a proof can, to a certain extent, be considered an objective
measure of its “beauty,” since shorter proofs are usually considered more
elegant. In the set theory database set.mm provided with Metamath, one
goal was to make all proofs as short as possible.

1.1.5 Simplicity

God made man simple; man’s complex problems are of his own
devising.

Eccres. 7:2979

God made integers, all else is the work of man.

LEOPOLD KRONECKERPY]

For what is clear and easily comprehended attracts; the compli-
cated repels.

DaviD HILBERT@

The Metamath language is simple and Spartan. Metamath treats all
mathematical expressions as simple sequences of symbols, devoid of meaning.
The higher-level or “metamathematical” notions underlying Metamath are

24 Jerusalem Bible.
25 Jahresbericht der Deutschen Mathematiker- Vereinigung , vol. 2, p. 19.
26 As quoted in [16], p. 273.

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 17

about as simple as they could possibly be. Each individual step in a proof
involves a single basic concept, the substitution of an expression for a
variable, so that in principle almost anyone, whether mathematician or not,
can completely understand how it was arrived at.

In one of its most basic applications, Metamath can be used to develop
the foundations of mathematics from the very beginning. This is done in
the set theory database that is provided with the Metamath package and is
the subject matter of Chapter [3| Any language (a metalanguage) used to
describe mathematics (an object language) must have a mathematical content
of its own, but it is desirable to keep this content down to a bare minimum,
namely that needed to make use of the inference rules specified by the axioms.
With any metalanguage there is a “chicken and egg” problem somewhat like
circular reasoning: you must assume the validity of the mathematics of the
metalanguage in order to prove the validity of the mathematics of the object
language. The mathematical content of Metamath itself is quite limited. Like
the rules of a game of chess, the essential concepts are simple enough so that
virtually anyone should be able to understand them (although that in itself
will not let you play like a master). The symbols that Metamath manipulates
do not in themselves have any intrinsic meaning. Your interpretation of the
axioms that you supply to Metamath is what gives them meaning. Metamath
is an attempt to strip down mathematical thought to its bare essence and
show you exactly how the symbols are manipulated.

Philosophers and logicians, with various motivations, have often thought
it important to study “weak” fragments of logic [2] [42], other unconventional
systems of logic (such as “modal” logic [8, ch. 27]), and quantum logic
in physics [5I]. Metamath provides a framework in which such systems
can be expressed, with an absolute precision that makes all underlying
metamathematical assumptions rigorous and crystal clear.

Some schools of philosophical thought, for example intuitionism and con-
structivism, demand that the notions underlying any mathematical system be
as simple and concrete as possible. Metamath should meet the requirements
of these philosophies. Metamath must be taught the symbols, axioms, and
rules for a specific theory, from the skeptical (such as intuitionisnﬂ) to the
bold (such as the axiom of choice in set theory@.

2"Intuitionism does not accept the law of excluded middle (“either something is true
or it is not true”). See [70, p. xi] for discussion and references on this topic. Consider
the theorem, “There exist irrational numbers a and b such that a® is rational.” An

intuitionist would reject the following proof: If \@ﬁ is rational, we are done. Otherwise,

let a = \/ﬁ\/E and b = v/2. Then a® = 2, which is rational.

28The axiom of choice asserts that given any collection of pairwise disjoint nonempty
sets, there exists a set that has exactly one element in common with each set of the
collection. It is used to prove many important theorems in standard mathematics. Some
philosophers object to it because it asserts the existence of a set without specifying what
the set contains [I8, p. 154]. In one foundation for mathematics due to Quine, that has
not been otherwise shown to be inconsistent, the axiom of choice turns out to be false [14]
p. 23]. The show trace_back command of the Metamath program allows you to find out

18 CHAPTER 1. INTRODUCTION

The simplicity of the Metamath language lets the algorithm (computer
program) that verifies the validity of a Metamath proof be straightforward
and robust. You can have confidence that the theorems it verifies really can
be derived from your axioms.

1.1.6 Rigor

Rigor became a goal with the Greeks. .. But the efforts to pursue
rigor to the utmost have led to an impasse in which there is
no longer any agreement on what it really means. Mathematics
remains alive and vital, but only on a pragmatic basis.

MoRRIS KLINHZ]

Kline refers to a much deeper kind of rigor than that which we will
discuss in this section. Godel’s incompleteness theorem showed that it is
impossible to achieve absolute rigor in standard mathematics because we
can never prove that mathematics is consistent (free from contradictions).
If mathematics is consistent, we will never know it, but must rely on faith.
If mathematics is inconsistent, the best we can hope for is that some clever
future mathematician will discover the inconsistency. In this case, the axioms
would probably be revised slightly to eliminate the inconsistency, as was
done in the case of Russell’s paradox, but the bulk of mathematics would
probably not be affected by such a discovery. Russell’s paradox, for example,
did not affect most of the remarkable results achieved by 19th-century and
earlier mathematicians. It mainly invalidated some of Gottlob Frege’s work
on the foundations of mathematics in the late 1800’s; in fact Frege’s work
inspired Russell’s discovery. Despite the paradox, Frege’s work contains
important concepts that have significantly influenced modern logic. Kline’s
Mathematics, The Loss of Certainty [31] has an interesting discussion of this
topic.

What can be achieved with absolute certainty is the knowledge that if
we assume the axioms are consistent and true, then the results derived from
them are true. Part of the beauty of mathematics is that it is the one area
of human endeavor where absolute certainty can be achieved in this sense.
A mathematical truth will remain such for eternity. However, our actual
knowledge of whether a particular statement is a mathematical truth is only
as certain as the correctness of the proof that establishes it. If the proof of a
statement is questionable or vague, we can’t have absolute confidence in the
truth that the statement claims.

Let us look at some traditional ways of expressing proofs.

Except in the field of formal logic, almost all traditional proofs in mathe-
matics are really not proofs at all, but rather proof outlines or hints as to

whether the axiom of choice, or any other axiom, was assumed by a proof.
29301, p. 1209.

1.1. MATHEMATICS AS A COMPUTER LANGUAGE 19

how to go about constructing the proof. Many gaps are left for the reader
to fill in. There are several reasons for this. First, it is usually assumed in
mathematical literature that the person reading the proof is a mathematician
familiar with the specialty being described, and that the missing steps are
obvious to such a reader or at least that the reader is capable of filling them
in. This attitude is fine for professional mathematicians in the specialty, but
unfortunately it often has the drawback of cutting off the rest of the world,
including mathematicians in other specialties, from understanding the proof.
We discussed one possible resolution to this on p. Second, it is often
assumed that a complete formal proof would require countless millions of
symbols (Section . This might be true if the proof were to be expressed
directly in terms of the axioms of logic and set theory, but it is usually not
true if we allow ourselves a hierarchy of definitions and theorems to build
upon, using a notation that allows us to introduce new symbols, definitions,
and theorems in a precisely specified way.

Even in formal logic, formal proofs that are considered complete still
contain hidden or implicit information. For example, a “proof” is usually
defined as a sequence of wﬁsm each of which is an axiom or follows from a
rule applied to previous wifs in the sequence. The implicit part of the proof
is the algorithm by which a sequence of symbols is verified to be a valid wif,
given the definition of a wif. The algorithm in this case is rather simple, but
for a computer to verify the proof, it must have the algorithm built into its
verification program@ If one deals exclusively with axioms and elementary
wifs, it is straightforward to implement such an algorithm. But as more and
more definitions are added to the theory in order to make the expression of
wifs more compact, the algorithm becomes more and more complicated. A
computer program that implements the algorithm becomes larger and harder
to understand as each definition is introduced, and thus more prone to bugs.
The larger the program, the more suspicious the mathematician may be
about the validity of its algorithms. This is especially true because computer
programs are inherently hard to follow to begin with, and few people enjoy
verifying them manually in detail.

Metamath takes a different approach. Metamath’s “knowledge” is lim-
ited to the ability to substitute variables for expressions, subject to some

30 A wff or well-formed formula is a mathematical expression (string of symbols) con-
structed according to some precise rules. A formal mathematical system contains (1) the
rules for constructing syntactically correct wifs, (2) a list of starting wifs called axioms,
and (3) one or more rules prescribing how to derive new wifs, called theorems, from the
axioms or previously derived theorems. An example of such a system is contained in
Metamath’s set theory database, which defines a formal system from which all of standard
mathematics can be derived. Section [2.2.1] steps you through a complete example of a
formal system, and you may want to skim it now if you are unfamiliar with the concept.

311t is possible, of course, to specify wif construction syntax outside of the program
itself with a suitable input language (the Metamath language being an example), but
some proof-verification or theorem-proving programs lack the ability to extend wff syntax
in such a fashion.

20 CHAPTER 1. INTRODUCTION

simple constraints. Once the basic algorithm of Metamath is assumed to be
debugged, and perhaps independently confirmed, it can be trusted once and
for all. The information that Metamath needs to “understand” mathematics
is contained entirely in the body of knowledge presented to Metamath. Any
errors in reasoning can only be errors in the axioms or definitions contained
in this body of knowledge. As a “constructive” language Metamath has no
conditional branches or loops like the ones that make computer programs
hard to decipher; instead, the language can only build new sequences of
symbols from earlier sequences of symbols.

The simplicity of the rules that underlie Metamath not only makes
Metamath easy to learn but also gives Metamath a great deal of flexibility.
For example, Metamath is not limited to describing standard first-order logic;
higher-order logics and fragments of logic can be described just as easily.
Metamath gives you the freedom to define whatever wif notation you prefer;
it has no built-in conception of the syntax of a wif. With suitable axioms
and definitions, Metamath can even describe and prove things about itself.
(John Harrison discusses the “reflection” principle involved in self-descriptive
systems in [22].)

The flexibility of Metamath requires that its proofs specify a lot of detail,
much more than in an ordinary “formal” proof. For example, in an ordinary
formal proof, a single step consists of displaying the wif that constitutes that
step. In order for a computer program to verify that the step is acceptable, it
first must verify that the symbol sequence being displayed is an acceptable wif.
Most proof verifiers have at least basic wif syntax built into their programs.
Metamath has no hard-wired knowledge of what constitutes a wif built into
it; instead every wif must be explicitly constructed based on rules defining
wifs that are present in a database. Thus a single step in an ordinary formal
proof may be correspond to many steps in a Metamath proof. Despite the
larger number of steps, though, this does not mean that a Metamath proof
must be significantly larger than an ordinary formal proof. The reason is
that since we have constructed the wif from scratch, we know what the wif
is, so there is no reason to display it. We only need to refer to a sequence of
statements that construct it. In a sense, the display of the wff in an ordinary
formal proof is an implicit proof of its own validity as a wff; Metamath just
makes the proof explicit. (Section describes Metamath’s proof notation.)

1.2 Computers and Mathematicians

The computer is important, but not to mathematics.

PauL Harmod3?

32 As quoted in [0], p. 121.

1.2. COMPUTERS AND MATHEMATICIANS 21

Pure mathematicians have traditionally been indifferent to computers,
even to the point of disdain. Computer science itself is sometimes considered
to fall in the mundane realm of “applied” mathematics, perhaps essential for
the real world but intellectually unexciting to those who seek the deepest
truths in mathematics. Perhaps a reason for this attitude towards computers
is that there is little or no computer software that meets their needs, and
there may be a general feeling that such software could not even exist. On
the one hand, there are the practical computer algebra systems, which can
perform amazing symbolic manipulations in algebra and calculus, yet can’t
prove the simplest existence theorem, if the idea of a proof is present at
all. On the other hand, there are specialized automated theorem provers
that technically speaking may generate correct proofs. But sometimes their
specialized input notation may be cryptic and their output perceived to be
long, inelegant, incomprehensible proofs. The output may be viewed with
suspicion, since the program that generates it tends to be very large, and
its size increases the potential for bugs. Such a proof may be considered
trustworthy only if independently verified and “understood” by a human,
but no one wants to waste their time on such a boring, unrewarding chore.

1.2.1 Trusting the Computer

... I continue to find the quasi-empirical interpretation of com-
puter proofs to be the more plausible.. . . Since not everything that
claims to be a computer proof can be accepted as valid, what are
the mathematical criteria for acceptable computer proofs?

THOMAS TYMOCZKAET]

In some cases, computers have been essential tools for proving famous
theorems. But if a proof is so long and obscure that it can be verified in a
practical way only with a computer, it is vaguely felt to be suspicious. For
example, proving the famous four-color theorem (“a map needs no more
than four colors to prevent any two adjacent countries from having the same
color”) can presently only be done with the aid of a very complex computer
program which originally required 1200 hours of computer time. There has
been considerable debate about whether such a proof can be trusted and
whether such a proof is “real” mathematics [65].

However, under normal circumstances even a skeptical mathematician
would have a great deal of confidence in the result of multiplying two numbers
on a pocket calculator, even though the precise details of what goes on are
hidden from its user. Even the verification on a supercomputer that a huge
number is prime is trusted, especially if there is independent verification;
no one bothers to debate the philosophical significance of its “proof,” even
though the actual proof would be so large that it would be completely

33[70], p. 245.

22 CHAPTER 1. INTRODUCTION

impractical to ever write it down on paper. It seems that if the algorithm
used by the computer is simple enough to be readily understood, then the
computer can be trusted.

Metamath adopts this philosophy. The simplicity of its language makes it
easy to learn, and because of its simplicity one can have essentially absolute
confidence that a proof is correct. All axioms, rules, and definitions are
available for inspection at any time because they are defined by the user;
there are no hidden or built-in rules that may be prone to subtle bugs. The
basic algorithm at the heart of Metamath is simple and fixed, and it can be
assumed to be bug-free and robust with a degree of confidence approaching
certainty. Independently written implementations of the Metamath verifier
can reduce any residual doubt on the part of a skeptic even further; there
are now over a dozen such implementations, written by many people.

1.2.2 Trusting the Mathematician

There is no Algebraist nor Mathematician so expert in his science,
as to place entire confidence in any truth immediately upon his
discovery of it, or regard it as any thing, but a mere probability.
Every time he runs over his proofs, his confidence encreases; but
still more by the approbation of his friends; and is rais’d to its
utmost perfection by the universal assent and applauses of the
learned world.

DaviD HUMEF’EI

Stanislaw Ulam estimates that mathematicians publish 200,000
theorems every year. A number of these are subsequently contra-
dicted or otherwise disallowed, others are thrown into doubt, and
most are ignored.

RICHARD DE MILLO ET. ALF’El

Whether or not the computer can be trusted, humans of course will
occasionally err. Only the most memorable proofs get independently verified,
and of these only a handful of truly great ones achieve the status of being
“known” mathematical truths that are used without giving a second thought
to their correctness.

There are many famous examples of incorrect theorems and proofs in
mathematical literature.

e There have been thousands of purported proofs of Fermat’s Last The-
orem (“no integer solutions exist to z™ + y™ = z" for n > 27), by

34 A Treatise of Human Nature, as quoted in [16], p. 267.
35[16], p. 269.

1.2. COMPUTERS AND MATHEMATICIANS 23

amateurs, cranks, and well-regarded mathematicians [64], p. 5]. Fermat
wrote a note in his copy of Bachet’s Diophantus that he found “a truly
marvelous proof of this theorem but this margin is too narrow to con-
tain it” [33] p. 507]. A recent, much publicized proof by Yoichi Miyaoka
was shown to be incorrect (Science News, April 9, 1988, p. 230). The
theorem was finally proved by Andrew Wiles (Science News, July 3,
1993, p. 5), but it initially had some gaps and took over a year after its
announcement to be checked thoroughly by experts. On Oct. 25, 1994,
Wiles announced that the last gap found in his proof had been filled in.

e In 1882, M. Pasch discovered that an axiom was omitted from Euclid’s
formulation of geometry; without it, the proofs of important theorems
of Euclid are not valid. Pasch’s axiom states that a line that intersects
one side of a triangle must also intersect another side, provided that it
does not touch any of the triangle’s vertices. The omission of Pasch’s
axiom went unnoticed for 2000 years [I5, p. 160], in spite of (one
presumes) the thousands of students, instructors, and mathematicians
who studied Euclid.

e The first published proof of the famous Schréder—Bernstein theorem in
set theory was incorrect [I8] p. 148]. This theorem states that if there
exists a 1-to-1 functiorﬁ from set A into set B and vice-versa, then
sets A and B have a 1-to-1 correspondence. Although it sounds simple
and obvious, the standard proof is quite long and complex.

e In the early 1900’s, Hilbert published a purported proof of the contin-
uum hypothesis, which was eventually established as unprovable by
Cohen in 1963 [18, p. 166]. The continuum hypothesis states that no
infinity (“transfinite cardinal number”) exists whose size (or “cardinal-
ity”) is between the size of the set of integers and the size of the set of
real numbers. This hypothesis originated with German mathematician
Georg Cantor in the late 1800’s, and his inability to prove it is said to
have contributed to mental illness that afflicted him in his later years.

e An incorrect proof of the four-color theorem was published by Kempe
in 1879 [13] p. 582]; it stood for 11 years before its flaw was discovered.
This theorem states that any map can be colored using only four
colors, so that no two adjacent countries have the same color. In
1976 the theorem was finally proved by the famous computer-assisted
proof of Haken, Appel, and Koch [65]. Or at least it seems that way.
Mathematician H. S. M. Coxeter has doubts [15, p. 58]: “I have a
feeling that that is an untidy kind of use of the computers, and the
more you correspond with Haken and Appel, the more shaky you seem
to be.”

36 A set is any collection of objects. A function or mapping is a rule that assigns to each
element of one set (called the function’s domain) an element from another set.

24 CHAPTER 1. INTRODUCTION

e Many false “proofs” of the Poincaré conjecture have been proposed
over the years. This conjecture states that any object that mathemat-
ically behaves like a three-dimensional sphere is a three-dimensional
sphere topologically, regardless of how it is distorted. In March 1986,
mathematicians Colin Rourke and Eduardo Régo caused a stir in the
mathematical community by announcing that they had found a proof;
in November of that year the proof was found to be false [53] p. 218].
It was finally proved in 2003 by Grigory Perelman [66].

Many counterexamples to “theorems” in recent mathematical literature
related to Clifford algebras have been found by Pertti Lounesto (who passed
away in 2002). See the web page http://mathforum.org/library/view/
4933 .htmll

One of the purposes of Metamath is to allow proofs to be expressed with
absolute precision. Developing a proof in the Metamath language can be
challenging, because Metamath will not permit even the tiniest mistake. But
once the proof is created, its correctness can be trusted immediately, without
having to depend on the process of peer review for confirmation.

1.3 The Use of Computers in Mathematics

1.3.1 Computer Algebra Systems

For the most part, you will find that Metamath is not a practical tool for
manipulating numbers. (Even proving that 2 + 2 = 4, if you start with set
theory, can be quite complex!) Several commercial mathematics packages are
quite good at arithmetic, algebra, and calculus, and as practical tools they
are invaluable. But they have no notion of proof, and cannot understand
statements starting with “there exists such and such...”.

Software packages such as Mathematica [76] do not concern themselves
with proofs but instead work directly with known results. These packages
primarily emphasize heuristic rules such as the substitution of equals for
equals to achieve simpler expressions or expressions in a different form.
Starting with a rich collection of built-in rules and algorithms, users can add
to the collection by means of a powerful programming language. However,
results such as, say, the existence of a certain abstract object without
displaying the actual object cannot be expressed (directly) in their languages.
The idea of a proof from a small set of axioms is absent. Instead this software
simply assumes that each fact or rule you add to the built-in collection of
algorithms is valid. One way to view the software is as a large collection
of axioms from which the software, with certain goals, attempts to derive
new theorems, for example equating a complex expression with a simpler
equivalent. But the terms “theorem” and “proof,” for example, are not even
mentioned in the index of the user’s manual for Mathematica. What is also
unsatisfactory from a philosophical point of view is that there is no way to

http://mathforum.org/library/view/4933.html
http://mathforum.org/library/view/4933.html

1.3. THE USE OF COMPUTERS IN MATHEMATICS 25

ensure the validity of the results other than by trusting the writer of each
application module or tediously checking each module by hand, similar to
checking a computer program for bugsm While of course extremely valuable
in applied mathematics, computer algebra systems tend to be of little interest
to the theoretical mathematician except as aids for exploring certain specific
problems.

Because of possible bugs, trusting the output of a computer algebra
system for use as theorems in a proof-verifier would defeat the latter’s goal of
rigor. On the other hand, a fact such that a certain relatively large number is
prime, while easy for a computer algebra system to derive, might have a long,
tedious proof that could overwhelm a proof-verifier. One approach for linking
computer algebra systems to a proof-verifier while retaining the advantages
of both is to add a hypothesis to each such theorem indicating its source.
For example, a constant MAPLE could indicate the theorem came from the
Maple package, and would mean “assuming Maple is consistent, then...”
This and many other topics concerning the formalization of mathematics are
discussed in John Harrison’s very interesting PhD thesis [23].

1.3.2 Automated Theorem Provers

A mathematical theory is “decidable” if a mechanical method or algorithm
exists that is guaranteed to determine whether or not a particular formula
is a theorem. Among the few theories that are decidable is elementary
geometry, as was shown by a classic result of logician Alfred Tarski in 1948
[68]@ But most theories, including elementary arithmetic, are undecidable.
This fact contributes to keeping mathematics alive and well, since many
mathematicians believe that they will never be replaced by computers (if
they believe Roger Penrose’s argument that a computer can never replace
the brain [52]). In fact, elementary geometry is often considered a “dead”
field for the simple reason that it is decidable.

On the other hand, the undecidability of a theory does not mean that
one cannot use a computer to search for proofs, providing one is willing to

37Two examples illustrate why the knowledge database of computer algebra systems
should sometimes be regarded with a certain caution. If you ask Mathematica (version
3.0) to Solve[x™n + y™n == z"n , n] it will respond with {{n->-2}, {n->-1}, {n->1},
{n->2}}. In other words, Mathematica seems to “know” that Fermat’s Last Theorem is
true! (At the time this version of Mathematica was released this fact was unknown.) If
you ask Maple to solve(x~2 = 2°x) then simplify({"}), it returns the solution set {2,
4}, apparently unaware that —0.7666647. . .is also a solution.

38Tarski’s result actually applies to a subset of the geometry discussed in elementary
textbooks. This subset includes most of what would be considered elementary geometry but
it is not powerful enough to express, among other things, the notions of the circumference
and area of a circle. Extending the theory in a way that includes notions such as
these makes the theory undecidable, as was also shown by Tarski. Tarski’s algorithm
is far too inefficient to implement practically on a computer. A practical algorithm for
proving a smaller subset of geometry theorems (those not involving concepts of “order” or
“continuity”) was discovered by Chinese mathematician Wu Wen-tsiin in 1977 [12].

26 CHAPTER 1. INTRODUCTION

give up if a proof is not found after a reasonable amount of time. The field of
automated theorem proving specializes in pursuing such computer searches.
Among the more successful results to date are those based on an algorithm
known as Robinson’s resolution principle [56].

Automated theorem provers can be excellent tools for those willing to
learn how to use them. But they are not widely used in mainstream pure
mathematics, even though they could probably be useful in many areas.
There are several reasons for this. Probably most important, the main goal
in pure mathematics is to arrive at results that are considered to be deep or
important; proving them is essential but secondary. Usually, an automated
theorem prover cannot assist in this main goal, and by the time the main goal
is achieved, the mathematician may have already figured out the proof as a
by-product. There is also a notational problem. Mathematicians are used to
using very compact syntax where one or two symbols (heavily dependent on
context) can represent very complex concepts; this is part of the hierarchy
they have built up to tackle difficult problems. A theorem prover on the other
hand might require that a theorem be expressed in “first-order logic,” which
is the logic on which most of mathematics is ultimately based but which is
not ordinarily used directly because expressions can become very long. Some
automated theorem provers are experimental programs, limited in their use
to very specialized areas, and the goal of many is simply research into the
nature of automated theorem proving itself. Finally, much research remains
to be done to enable them to prove very deep theorems. One significant
result was a computer proof by Larry Wos and colleagues that every Robbins
algebra is a Boolean algebra (New York Times, Dec. 10, 1996)@

How does Metamath relate to automated theorem provers? A theorem
prover is primarily concerned with one theorem at a time (perhaps tapping
into a small database of known theorems) whereas Metamath is more like
a theorem archiving system, storing both the theorem and its proof in a
database for access and verification. Metamath is one answer to “what do
you do with the output of a theorem prover?” and could be viewed as the
next step in the process. Automated theorem provers could be useful tools for

39In 1933, E. V. Huntington presented the following axiom system for Boolean algebra,
with a unary operation n and a binary operation +:

rt+y=y+x
(+y)+tz=z+(y+2)
n(n(z) +y) + n(n(z) + n(y)) ==

Herbert Robbins, a student of Huntington, conjectured that the last equation can be
replaced with a simpler one:

n(n(z +y) +n(z+n(y)) ==

Robbins and Huntington could not find a proof. The problem was later studied unsuccess-
fully by Tarski and his students, and it remained an unsolved problem until a computer
found the proof in 1996. For more information on the Robbins algebra problem see [77].

1.3. THE USE OF COMPUTERS IN MATHEMATICS 27

helping develop its database. Note that very long, automatically generated
proofs can make your database fat and ugly and cause Metamath’s proof
verification to take a long time to run. Unless you have a particularly good
program that generates very concise proofs, it might be best to consider the
use of automatically generated proofs as a quick-and-dirty approach, to be
manually rewritten at some later date.

The program OTTER@ later succeeded by proverﬂ have been histori-
cally influential. The E proveﬂ is a maintained automated theorem prover
for full first-order logic with equality. There are many other automated
theorem provers as well.

If you want to combine automated theorem provers with Metamath
consider investigating the book Automated Reasoning: Introduction and
Applications [77]. This book discusses how to use OTTER in a way that can
not only able to generate relatively efficient proofs, it can even be instructed
to search for shorter proofs. The effective use of OTTER (and similar tools)
does require a certain amount of experience, skill, and patience. The axiom
system used in the set.mm set theory database can be expressed to OTTER
using a method described in [41}@ When successful, this method tends to
generate short and clever proofs, but my experiments with it indicate that
the method will find proofs within a reasonable time only for relatively easy
theorems. It is still fun to experiment with.

Reference [7] surveys a number of approaches people have explored in
the field of automated theorem proving.

1.3.3 Interactive Theorem Provers

Finding proofs completely automatically is difficult, so there are some inter-
active theorem provers that allow a human to guide the computer to find a
proof. Examples include HOL Ligh@ Isabelle{fl, HOLIEI7 and Cocﬂ

A major difference between most of these tools and Metamath is that the
“proofs” are actually programs that guide the program to find a proof, and not
the proof itself. For example, an Isabelle/HOL proof might apply a step apply
(blast dest: rearrange reduction). The blast instruction applies an
automatic tableux prover and returns if it found a sequence of proof steps
that work... but the sequence is not considered part of the proof.

A good overview of higher-level proof verification languages (such as
LCF and HOL) is given in [22]. All of these languages are fundamentally

4Ohttp://www.cs.unm.edu/~mccune/otter/.

4Thttps://www.cs.unm.edu/~mccune/mace4/.

“%https://github.com/eprover/eprover.

43To use those axioms with OTTER, they must be restated in a way that eliminates the
need for “dummy variables.” See the Comment on p. [125

44https://www.cl.cam.ac.uk/~jrh13/hol-1light/.

4Shttp://www.cl.cam.ac.uk/Research/HVG/Isabelle.

46https://hol-theorem-prover.org/.

4"nttps://coq.inria.fr/.

http://www.cs.unm.edu/~mccune/otter/
https://www.cs.unm.edu/~mccune/mace4/
https://github.com/eprover/eprover
https://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle
https://hol-theorem-prover.org/
https://coq.inria.fr/

28 CHAPTER 1. INTRODUCTION

different from Metamath in that much of the mathematical foundational
knowledge is embedded in the underlying proof-verification program, rather
than placed directly in the database that is being verified. These can have
a steep learning curve for those without a mathematical background. For
example, one usually must have a fair understanding of mathematical logic
in order to follow their proofs.

1.3.4 Proof Verifiers

A proof verifier is a program that doesn’t generate proofs but instead verifies
proofs that you give it. Many proof verifiers have limited built-in automated
proof capabilities, such as figuring out simple logical inferences (while still
being guided by a person who provides the overall proof). Metamath has no
built-in automated proof capability other than the limited capability of its
Proof Assistant.

Proof-verification languages are not used as frequently as they might be.
Pure mathematicians are more concerned with producing new results, and
such detail and rigor would interfere with that goal. The use of computers in
pure mathematics is primarily focused on automated theorem provers (not
verifiers), again with the ultimate goal of aiding the creation of new mathe-
matics. Automated theorem provers are usually concerned with attacking
one theorem at time rather than making a large, organized database easily
available to the user. Metamath is one way to help close this gap.

By itself Metamath is a mostly a proof verifier. This does not mean
that other approaches can’t be used; the difference is that in Metamath, the
results of various provers must be recorded step-by-step so that they can be
verified.

Another proof-verification language is Mizar, which can display its proofs
in the informal language that mathematicians are accustomed to. Information
on the Mizar language is available at http://mizar.org.

For the working mathematician, Mizar is an excellent tool for rigorously
documenting proofs. Mizar typesets its proofs in the informal English used
by mathematicians (and, while fine for them, are just as inscrutable by
laypersons!). A price paid for Mizar is a relatively steep learning curve of a
couple of weeks. Several mathematicians are actively formalizing different
areas of mathematics using Mizar and publishing the proofs in a dedicated
journal. Unfortunately the task of formalizing mathematics is still looked
down upon to a certain extent since it doesn’t involve the creation of “new”
mathematics.

The closest system to Metamath is the Ghilbert proof language (http:
//ghilbert.org) system developed by Raph Levien. Ghilbert is a formal
proof checker heavily inspired by Metamath. Ghilbert statements are s-
expressions (a la Lisp), which is easy for computers to parse but many
people find them hard to read. There are a number of differences in their
specific constructs, but there is at least one tool to translate some Metamath

http://mizar.org
http://ghilbert.org
http://ghilbert.org

1.3. THE USE OF COMPUTERS IN MATHEMATICS 29

materials into Ghilbert. As of 2019 the Ghilbert community is smaller and
less active than the Metamath community. That said, the Metamath and
Ghilbert communities overlap, and fruitful conversations between them have
occurred many times over the years.

1.3.5 Creating a Database of Formalized Mathematics

Besides Metamath, there are several other ongoing projects with the goal of
formalizing mathematics into computer-verifiable databases. Understanding
some history will help.

The QEIﬂ project arose in 1993 and its goals were outlined in the QED
manifesto. The QED manifesto was a proposal for a computer-based database
of all mathematical knowledge, strictly formalized and with all proofs having
been checked automatically. The project had a conference in 1994 and another
in 1995; there was also a “twenty years of the QED manifesto” workshop in
2014. Its ideals are regularly reraised.

In a 2007 paper, Freek Wiedijk identified two reasons for the failure of
the QED project as originally envisioned: [75]

e Very few people are working on formalization of mathematics. There
is no compelling application for fully mechanized mathematics.

e Formalized mathematics does not yet resemble traditional mathemat-
ics. This is partly due to the complexity of mathematical notation,
and partly to the limitations of existing theorem provers and proof
assistants.

But this did not end the dream of formalizing mathematics into computer-
verifiable databases. The problems that led to the QED manifesto are still
with us, even though the challenges were harder than originally considered.
What has happened instead is that various independent projects have worked
towards formalizing mathematics into computer-verifiable databases, each
simultaneously competing and cooperating with each other.

A concrete way to see this is Freek Wiedijk’s “Formalizing 100 Theorems”
1ist|§| which shows the progress different systems have made on a challenge
list of 100 mathematical theorems@ The top systems as of February 2019
(in order of the number of challenges completed) are HOL Light, Isabelle,
Metamath, Coq, and Mizar.

The Metamath 10@ page (maintained by David A. Wheeler) shows
the progress of Metamath (specifically its set.mm database) against this
challenge list maintained by Freek Wiedijk. The Metamath set.mm database

48http://www-unix.mcs.anl.gov/qed.

49nttp://www.cs.ru.nl/Y7Efreek/100/.

50 This is not the only list of “interesting” theorems. Another interesting list was posted
by Oliver Knill’s list [32].

5Thttp://us.metamath.org/mm_100.html

http://www-unix.mcs.anl.gov/qed
http://www.cs.ru.nl/%7Efreek/100/
http://us.metamath.org/mm_100.html

30 CHAPTER 1. INTRODUCTION

has made a lot of progress over the years, in part because working to prove
those challenge theorems required defining various terms and proving their
properties as a prerequisite. Here are just a few of the many statements that
have been formally proven with Metamath:

e 1. The Irrationality of the Square Root of 2 (sqr2irr, by Norman
Megill, 2001-08-20)

e 2. The Fundamental Theorem of Algebra (fta, by Mario Carneiro,
2014-09-15)

e 22. The Non-Denumerability of the Continuum (ruc, by Norman
Megill, 2004-08-13)

e 54. The Konigsberg Bridge Problem (konigsberg, by Mario Carneiro,
2015-04-16)

e 83. The Friendship Theorem (friendship, by Alexander W. van der
Vekens, 2018-10-09)

We thank all of those who have developed at least one of the Metamath
100 proofs, and we particularly thank Mario Carneiro who has contributed
the most Metamath 100 proofs as of 2019. The Metamath 100 page shows
the list of all people who have contributed a proof, and links to graphs and
charts showing progress over time. We encourage others to work on proving
theorems not yet proven in Metamath, since doing so improves the work as
a whole.

Each of the math formalization systems (including Metamath) has differ-
ent strengths and weaknesses, depending on what you value. Key aspects
that differentiate Metamath from the other top systems are:

e Metamath is not tied to any particular set of axioms.

e Metamath can show every step of every proof, no exceptions. Most
other provers only assert that a proof can be found, and do not show
every step. This also makes verification fast, because the system does
not need to rediscover proof details.

e The Metamath verifier has been re-implemented in many different
programming languages, so verification can be done by multiple im-
plementations. In particular, the set.mm database is verified by four
different verifiers written in four different languages by four different
authors. This greatly reduces the risk of accepting an invalid proof due
to an error in the verifier.

e Proofs stay proven. In some systems, changes to the system’s syntax or
how a tactic works causes proofs to fail in later versions, causing older
work to become essentially lost. Metamath’s language is extremely

1.4. MATHEMATICS AND METAMATH 31

small and fixed, so once a proof is added to a database, the database
can be rechecked with later versions of the Metamath program and with
other verifiers of Metamath databases. If an axiom or key definition
needs to be changed, it is easy to manipulate the database as a whole
to handle the change without touching the underlying verifier. Since re-
verification of an entire database takes seconds, there is never a reason
to delay complete verification. This aspect is especially compelling if
your goal is to have a long-term database of proofs.

e Licensing is generous. The main Metamath databases are released to
the public domain, and the main Metamath program is open source
software under a standard, widely-used license.

e Substitutions are easy to understand, even by those who are not
professional mathematicians.

Of course, other systems may have advantages over Metamath that are
more compelling, depending on what you value. In any case, we hope this
helps you understand Metamath within a wider context.

1.3.6 In Summary

To summarize our discussions of computers and mathematics, computer alge-
bra systems can be viewed as theorem generators focusing on a narrow realm
of mathematics (numbers and their properties), automated theorem provers
as proof generators for specific theorems in a much broader realm covered by
a built-in formal system such as first-order logic, interactive theorem provers
require human guidance, proof verifiers verify proofs but historically they
have been restricted to first-order logic. Metamath, in contrast, is a proof
verifier and documenter whose realm is essentially unlimited.

1.4 Mathematics and Metamath

1.4.1 Standard Mathematics

There are a number of ways that Metamath can be used with standard
mathematics. The most satisfying way philosophically is to start at the very
beginning, and develop the desired mathematics from the axioms of logic
and set theory. This is the approach taken in the set.mm database (also
known as the Metamath Proof Explorer). Among other things, this database
builds up to the axioms of real and complex numbers (see Section , and
a standard development of analysis, for example, could start at that point,
using it as a basis. Besides this philosophical advantage, there are practical
advantages to having all of the tools of set theory available in the supporting
infrastructure.

32 CHAPTER 1. INTRODUCTION

On the other hand, you may wish to start with the standard axioms of
a mathematical theory without going through the set theoretical proofs of
those axioms. You will need mathematical logic to make inferences, but if you
wish you can simply introduce theorems of logic as “axioms” wherever you
need them, with the implicit assumption that in principle they can be proved,
if they are obvious to you. If you choose this approach, you will probably
want to review the notation used in set.mm so that your own notation will
be consistent with it.

1.4.2 Other Formal Systems

Unlike some programs, Metamath is not limited to any specific area of
mathematics, nor committed to any particular mathematical philosophy
such as classical logic versus intuitionism, nor limited, say, to expressions in
first-order logic. Although the database set.mm describes standard logic and
set theory, Metamath is actually a general-purpose language for describing a
wide variety of formal systems. Non-standard systems such as modal logic,
intuitionist logic, higher-order logic, quantum logic, and category theory
can all be described with the Metamath language. You define the symbols
you prefer and tell Metamath the axioms and rules you want to start from,
and Metamath will verify any inferences you make from those axioms and
rules. A simple example of a non-standard formal system is Hofstadter’s
MIU system, whose Metamath description is presented in Appendix

This is not hypothetical. The largest Metamath database is set.mm),
aka the Metamath Proof Explorer, which uses the most common axioms
for mathematical foundations (specifically classical logic combined with
Zermelo—Fraenkel set theory with the Axiom of Choice). But other Metamath
databases are available:

e The database iset.mm, aka the Intuitionistic Logic Explorer, uses
intuitionistic logic (a constructivist point of view) instead of classical
logic.

e The database nf.mm, aka the New Foundations Explorer, constructs
mathematics from scratch, starting from Quine’s New Foundations
(NF) set theory axioms.

e The database hol.mm, aka the Higher-Order Logic (HOL) Explorer,
starts with HOL (also called simple type theory) and derives equivalents
to ZFC axioms, connecting the two approaches.

Since the days of David Hilbert, mathematicians have been concerned
with the fact that the metalanguage used to describe mathematics may be
stronger than the mathematics being described. Metamath’s underlying
finitary, constructive nature provides a good philosophical basis for studying
even the weakest logics.

1.4. MATHEMATICS AND METAMATH 33

The usual treatment of many non-standard formal systems uses model
theory or proof theory to describe these systems; these theories, in turn, are
based on standard set theory. In other words, a non-standard formal system
is defined as a set with certain properties, and standard set theory is used to
derive additional properties of this set. The standard set theory database
provided with Metamath can be used for this purpose, and when used this
way the development of a special axiom system for the non-standard formal
system becomes unnecessary. The model- or proof-theoretic approach often
allows you to prove much deeper results with less effort.

Metamath supports both approaches. You can define the non-standard
formal system directly, or define the non-standard formal system as a set
with certain properties, whichever you find most helpful.

1.4.3 Metamath and Its Philosophy

Closely related to Metamath is a philosophy or way of looking at mathematics.
This philosophy is related to the formalist philosophy of Hilbert and his
followers [30, pp. 1203-1208] [4, p. 6]. In this philosophy, mathematics is
viewed as nothing more than a set of rules that manipulate symbols, together
with the consequences of those rules. While the mathematics being described
may be complex, the rules used to describe it (the “metamathematics”)
should be as simple as possible. In particular, proofs should be restricted to
dealing with concrete objects (the symbols we write on paper rather than
the abstract concepts they represent) in a constructive manner; these are
called “finitary” proofs [62 pp. 2-3].

Whether or not you find Metamath interesting or useful will in part depend
on the appeal you find in its philosophy, and this appeal will probably depend
on your particular goals with respect to mathematics. For example, if you
are a pure mathematician at the forefront of discovering new mathematical
knowledge, you will probably find that the rigid formality of Metamath stifles
your creativity. On the other hand, we would argue that once this knowledge
is discovered, there are advantages to documenting it in a standard format
that will make it accessible to others. Sixty years from now, your field may
be dormant, and as Davis and Hersh put it, your “writings would become
less translatable than those of the Maya” [15] p. 37].

1.4.4 A History of the Approach Behind Metamath

Probably the one work that has had the most motivating influence on
Metamath is Whitehead and Russell’s monumental Principia Mathematica
[74], whose aim was to deduce all of mathematics from a small number
of primitive ideas, in a very explicit way that in principle anyone could
understand and follow. While this work was tremendously influential in its
time, from a modern perspective it suffers from several drawbacks. Both
its notation and its underlying axioms are now considered dated and are

34 CHAPTER 1. INTRODUCTION

no longer used. From our point of view, its development is not really as
accessible as we would like to see; for practical reasons, proofs become more
and more sketchy as its mathematics progresses, and working them out in
fine detail requires a degree of mathematical skill and patience that many
people don’t have. There are numerous small errors, which is understandable
given the tedious, technical nature of the proofs and the lack of a computer
to verify the details. However, even today Principia Mathematica stands out
as the work closest in spirit to Metamath. It remains a mind-boggling work,
and one can’t help but be amazed at seeing “1 + 1 = 2” finally appear on
page 83 of Volume II (Theorem *110.643).

The origin of the proof notation used by Metamath dates back to the
1950’s, when the logician C. A. Meredith expressed his proofs in a compact
notation called “condensed detachment” [25] [29] [45] [54]. This notation
allows proofs to be communicated unambiguously by merely referencing the
axiom, rule, or theorem used at each step, without explicitly indicating the
substitutions that have to be made to the variables in that axiom, rule,
or theorem. Ordinarily, condensed detachment is more or less limited to
propositional calculus. The concept has been extended to first-order logic in
[41], making it is easy to write a small computer program to verify proofs of
simple first-order logic theorems.

A key concept behind the notation of condensed detachment is called
“unification,” which is an algorithm for determining what substitutions to
variables have to be made to make two expressions match each other. Unifi-
cation was first precisely defined by the logician J. A. Robinson, who used
it in the development of a powerful theorem-proving technique called the
“resolution principle” [56]. Metamath does not make use of the resolution
principle, which is intended for systems of first-order logic. Metamath’s use
is not restricted to first-order logic, and as we have mentioned it does not
automatically discover proofs. However, unification is a key idea behind
Metamath’s proof notation, and Metamath makes use of a very simple version

of it (Section [4.3.1]).

1.4.5 Metamath and First-Order Logic

First-order logic is the supporting structure for standard mathematics. On
top of it is set theory, which contains the axioms from which virtually all of
mathematics can be derived—a remarkable factFZ]

One of the things that makes Metamath more practical for first-order
theories is a set of axioms for first-order logic designed specifically with
Metamath’s approach in mind. These are included in the database set.mm.

52 An exception seems to be category theory. There are several schools of thought on
whether category theory is derivable from set theory. At a minimum, it appears that an
additional axiom is needed that asserts the existence of an “inaccessible cardinal” (a type
of infinity so large that standard set theory can’t prove or deny that it exists). For more
information, see [24], pp. 328-331] and [6].

1.4. MATHEMATICS AND METAMATH 35

See Chapter [3|for a detailed description; the axioms are shown in Section [3.3
While logically equivalent to standard axiom systems, our axiom system
breaks up the standard axioms into smaller pieces such that from them, you
can directly derive what in other systems can only be derived as higher-level
“metatheorems.” In other words, it is more powerful than the standard axioms
from a metalogical point of view. A rigorous justification for this system and
its “metalogical completeness” is found in [41]. The system is closely related
to a system developed by Monk and Tarski in 1965 [46].

For example, the formula 3z x = y (given y, there exists some z equal to
it) is a theorem of logicﬂ whether or not x and y are distinct variables. In
many systems of logic, we would have to prove two theorems to arrive at this
result. First we would prove “Jxx = x,” then we would separately prove
“Jrx = y, where x and y are distinct variables.” We would then combine
these two special cases “outside of the system” (i.e. in our heads) to be able
to claim, “dxx = y, regardless of whether x and y are distinct.” In other
words, the combination of the two special cases is a metatheorem. In the
system of logic used in Metamath’s set theory database, the axioms of logic
are broken down into small pieces that allow them to be reassembled in such
a way that theorems such as these can be proved directly.

Breaking down the axioms in this way makes them look peculiar and not
very intuitive at first, but rest assured that they are correct and complete.
Their correctness is ensured because they are theorem schemes of standard
first-order logic (which you can easily verify if you are a logician). Their
completeness follows from the fact that we explicitly derive the standard
axioms of first-order logic as theorems. Deriving the standard axioms is
somewhat tricky, but once we’re there, we have at our disposal a system
that is less awkward to work with in formal proofs. In technical terms
that logicians understand, we eliminate the cumbersome concepts of “free
variable,” “bound variable,” and “proper substitution” as primitive notions.
These concepts are present in our system but are defined in terms of concepts
expressed by the axioms and can be eliminated in principle. In standard
systems, these concepts are really like additional, implicit axioms that are
somewhat complex and cannot be eliminated.

The traditional approach to logic, wherein free variables and proper
substitution is defined, is also possible to do directly in the Metamath
language. However, the notation tends to become awkward, and there are
disadvantages: for example, extending the definition of a wif with a definition
is awkward, because the free variable and proper substitution concepts have

53Specifically, it is a theorem of those systems of logic that assume non-empty domains.
It is not a theorem of more general systems that include the empty domain, in which
nothing exists, period! Such systems are called “free logics.” For a discussion of these
systems, see [36]. Since our use for logic is as a basis for set theory, which has a non-empty
domain, it is more convenient (and more traditional) to use a less general system. An
interesting curiosity is that, using a free logic as a basis for Zermelo—Fraenkel set theory
(with the redundant Axiom of the Null Set omitted), we cannot even prove the existence
of a single set without assuming the axiom of infinity!

36 CHAPTER 1. INTRODUCTION

to have their definitions also extended. Our choice of axioms for set.mm is to
a certain extent a matter of style, in an attempt to achieve overall simplicity,
but you should also be aware that the traditional approach is possible as
well if you should choose it.

Chapter 2

Using the Metamath
Program

2.1 Installation

The way that you install Metamath on your computer system will vary for
different computers. Current instructions are provided with the Metamath
program download at http://metamath.org. In general, the installation
is simple. There is one file containing the Metamath program itself. This
file is usually called metamath or metamath.zxx where zzz is the convention
(such as exe) for an executable program on your operating system. There
are several additional files containing samples of the Metamath language, all
ending with .mm. The file set.mm contains logic and set theory and can be
used as a starting point for other areas of mathematics.

You will also need a text editor capable of editing plain ASCI]E] text in
order to prepare your input files. Most computers have this capability built in.
Note that plain text is not necessarily the default for some word processing
programs, especially if they can handle different fonts; for example, with
Microsoft Word, you must save the file in the format “Text Only With Line
Breaks” to get a plain text ﬁleE]

On some computer systems, Metamath does not have the capability to
print its output directly; instead, you send its output to a file (using the
open commands described later). The way you print this output file depends
on your computer. Some computers have a print command, whereas with
others, you may have to read the file into an editor and print it from there.

! American Standard Code for Information Interchange.

2Tt is recommended that all lines in a Metamath source file be 79 characters or less in
length for compatibility among different computer terminals. When creating a source file
on an editor such as Word, select a monospaced font such as Courier or Monaco to make
this easier to achieve. Better yet, just use a plain text editor such as Notepad.

37

http://metamath.org

38 CHAPTER 2. USING THE METAMATH PROGRAM

If you want to print your Metamath source files with typeset formulas
containing standard mathematical symbols, you will need the IWTEX typeset-
ting program, which is widely and freely available for most operating systems.
It runs natively on Unix and Linux, and can be installed on Windows as
part of the free Cygwin package (http://cygwin.com).

You can also produce HTMIJ’| web pages. The help html command in
the Metamath program will assist you with this feature.

2.2 Your First Formal System

2.2.1 From Nothing to Zero

To give you a feel for what the Metamath language looks like, we will take a
look at a very simple example from formal number theory. This example is
taken from Mendelson [43] p. 123]E| We will look at a small subset of this
theory, namely that part needed for the first number theory theorem proved
in [43].

First we will look at a standard formal proof for the example we have
picked, then we will look at the Metamath version. If you have never
been exposed to formal proofs, the notation may seem to be such overkill
to express such simple notions that you may wonder if you are missing
something. You aren’t. The concepts involved are in fact very simple, and a
detailed breakdown in this fashion is necessary to express the proof in a way
that can be verified mechanically. And as you will see, Metamath breaks the
proof down into even finer pieces so that the mechanical verification process
can be about as simple as possible.

Before we can introduce the axioms of the theory, we must define the
syntax rules for forming legal expressions (combinations of symbols) with
which those axioms can be used. The number 0 is a term; and if ¢ and
r are terms, so is (¢t + r). Here, t and r are “metavariables” ranging over
terms; they themselves do not appear as symbols in an actual term. Some
examples of actual terms are (0 + 0) and ((0 + 0) + 0). (Note that our
theory describes only the number zero and sums of zeroes. Of course, not
much can be done with such a trivial theory, but remember that we have
picked a very small subset of complete number theory for our example. The
important thing for you to focus on is our definitions that describe how
symbols are combined to form valid expressions, and not on the content
or meaning of those expressions.) If ¢ and r are terms, an expression of
the form ¢ = r is a wif (well-formed formula); and if P and @ are wffs, so
is (P — Q) (which means “P implies Q" or “if P then @Q”). Here P and
(@ are metavariables ranging over wifs. Examples of actual wifs are 0 = 0,

SHyperText Markup Language.
4To keep the example simple, we have changed the formalism slightly, and what we
call axioms are strictly speaking theorems in [43].

http://cygwin.com

2.2. YOUR FIRST FORMAL SYSTEM 39

(0+0)=0,0=0—=(0+0)=0),and (0=0—(0=0—= 0= (0+0))).
(Our notation makes use of more parentheses than are customary, but the
elimination of ambiguity this way simplifies our example by avoiding the
need to define operator precedence.)

The axioms of our theory are all wifs of the following form, where ¢, r,
and s are any terms:

(A1) t=r—(t=s—r=s))
(A2) (t+0) =t

Note that there are an infinite number of axioms since there are an infinite
number of possible terms. Al and A2 are properly called “axiom schemes,”
but we will refer to them as “axioms” for brevity.

An axiom is a theorem; and if P and (P — @) are theorems (where P
and @ are wifs), then @ is also a theorem. The second part of this definition
is called the modus ponens (MP) rule of inference. It allows us to obtain
new theorems from old ones.

The proof of a theorem is a sequence of one or more theorems, each
of which is either an axiom or the result of modus ponens applied to two
previous theorems in the sequence, and the last of which is the theorem being
proved.

The theorem we will prove for our example is very simple: ¢ = t. The
proof of our theorem follows. Study it carefully until you feel sure you
understand it.

1. (t+0)=t (by axiom A2)

2. (t+0)=t (by axiom A2)

3. (t+0)=t—=((t+0)=1t— (by axiom Al)
t=t))

4. (t+0)=t—=t=1) (by MP applied to steps 2 and
3)

5 t=t (by MP applied to steps 1 and
4)

(You may wonder why step 1 is repeated twice. This is not necessary in the
formal language we have defined, but in Metamath’s “reverse Polish notation”
for proofs, a previous step can be referred to only once. The repetition of
step 1 here will enable you to see more clearly the correspondence of this
proof with the Metamath version on p.)

Our theorem is more properly called a “theorem scheme,” for it represents
an infinite number of theorems, one for each possible term ¢. Two examples
of actual theorems would be 0 = 0 and (04 0) = (04 0). Rarely do we prove
actual theorems, since by proving schemes we can prove an infinite number
of theorems in one fell swoop. Similarly, our proof should really be called
a “proof scheme.” To obtain an actual proof, pick an actual term to use in
place of ¢, and substitute it for ¢ throughout the proof.

40 CHAPTER 2. USING THE METAMATH PROGRAM

Let’s discuss what we have done here. The axioms of our theory, A1l and
A2, are trivial and obvious. Everyone knows that adding zero to something
doesn’t change it, and also that if two things are equal to a third, then they
are equal to each other. In fact, stating the trivial and obvious is a goal
to strive for in any axiomatic system. From trivial and obvious truths that
everyone agrees upon, we can prove results that are not so obvious yet have
absolute faith in them. If we trust the axioms and the rules, we must, by
definition, trust the consequences of those axioms and rules, if logic is to
mean anything at all.

Our rule of inference, modus ponens, is also pretty obvious once you
understand what it means. If we prove a fact P, and we also prove that P
implies @, then @ necessarily follows as a new fact. The rule provides us
with a means for obtaining new facts (i.e. theorems) from old ones.

The theorem that we have proved, ¢ = t, is so fundamental that you may
wonder why it isn’t one of the axioms. In some axiom systems of arithmetic,
it 4s an axiom. The choice of axioms in a theory is to some extent arbitrary
and even an art form, constrained only by the requirement that any two
equivalent axiom systems be able to derive each other as theorems. We could
imagine that the inventor of our axiom system originally included t =t as
an axiom, then discovered that it could be derived as a theorem from the
other axioms. Because of this, it was not necessary to keep it as an axiom.
By eliminating it, the final set of axioms became that much simpler.

Unless you have worked with formal proofs before, it probably wasn’t
apparent to you that ¢ =t could be derived from our two axioms until you
saw the proof. While you certainly believe that ¢t = ¢ is true, you might not
be able to convince an imaginary skeptic who believes only in our two axioms
until you produce the proof. Formal proofs such as this are hard to come up
with when you first start working with them, but after you get used to them
they can become interesting and fun. Once you understand the idea behind
formal proofs you will have grasped the fundamental principle that underlies
all of mathematics. As the mathematics becomes more sophisticated, its
proofs become more challenging, but ultimately they all can be broken down
into individual steps as simple as the ones in our proof above.

Mendelson’s book, from which our example was taken, contains a number
of detailed formal proofs such as these, and you may be interested in looking
it up. The book is intended for mathematicians, however, and most of it
is rather advanced. Popular literature describing formal proofs include [58],
p. 296] and [26], pp. 204-230].

2.2.2 Converting It to Metamath

Formal proofs such as the one in our example break down logical reasoning
into small, precise steps that leave little doubt that the results follow from
the axioms. You might think that this would be the finest breakdown we can
achieve in mathematics. However, there is more to the proof than meets the

2.2. YOUR FIRST FORMAL SYSTEM 41

eye. Although our axioms were rather simple, a lot of verbiage was needed
before we could even state them: we needed to define “term,” “wff,” and so
on. In addition, there are a number of implied rules that we haven’t even
mentioned. For example, how do we know that step 3 of our proof follows
from axiom A17 There is some hidden reasoning involved in determining this.
Axiom Al has two occurrences of the letter t. One of the implied rules states
that whatever we substitute for ¢+ must be a legal term '] The expression ¢+ 0
is pretty obviously a legal term whenever ¢ is, but suppose we wanted to
substitute a huge term with thousands of symbols? Certainly a lot of work
would be involved in determining that it really is a term, but in ordinary
formal proofs all of this work would be considered a single “step.”

To express our axiom system in the Metamath language, we must describe
this auxiliary information in addition to the axioms themselves. Metamath
does not know what a “term” or a “wftf” is. In Metamath, the specification
of the ways in which we can combine symbols to obtain terms and wils are
like little axioms in themselves. These auxiliary axioms are expressed in
the same notation as the “real” axioms, and Metamath does not distinguish
between the two. The distinction is made by you, i.e. by the way in which
you interpret the notation you have chosen to express these two kinds of
axioms.

The Metamath language breaks down mathematical proofs into tiny
pieces, much more so than in ordinary formal proofs. If a single step involves
the substitution of a complex term for one of its variables, Metamath must
see this single step broken down into many small steps. This fine-grained
breakdown is what gives Metamath generality and flexibility as it lets it not
be limited to any particular mathematical notation.

Metamath’s proof notation is not, in itself, intended to be read by humans
but rather is in a compact format intended for a machine. The Metamath
program will convert this notation to a form you can understand, using the
show proof command. You can tell the program what level of detail of the
proof you want to look at. You may want to look at just the logical inference
steps that correspond to ordinary formal proof steps, or you may want to
see the fine-grained steps that prove that an expression is a term.

Here, without further ado, is our example converted to the Metamath
language:

$(Declare the constant symbols we will use $)
$c 0 + = > () term wff |- $.

$(Declare the metavariables we will use $)
$vtrsPQS$.

$(Specify properties of the metavariables $)
tt $f term t $.
tr $f term r $.

5Some authors make this implied rule explicit by stating, “only expressions of the
above form are terms,” after defining “term.”

42 CHAPTER 2. USING THE METAMATH PROGRAM

ts $f term s $.
wp $f wff P $.
wq $f wif Q $.
$(Define "term" and "wff" $)
tze $a term 0 $.
tpl $a term (t + r) $.
weq $a wif t = r $.
wim $a wff (P -> Q) $.
$(State the axioms $)
al $a - (t=r > (t=s8s->r=s)) 8.
a2 $a |- (t +0) =t $.
$(Define the modus ponens inference rule $)
${
min $e |- P $.
maj $e |- (P > Q) $.
mp $a |- Q $.
$}
$(Prove a theorem $)
thl $p |-t =t $=
$(Here is its proof: $)
tt tze tpl tt weq tt tt weq tt a2 tt tze tpl
tt weq tt tze tpl tt weq tt tt weq wim tt a2
tt tze tpl tt tt al mp mp
$.

A “database” is a set of one or more ASCII source files. Here’s a brief
description of this Metamath database (which consists of this single source
file), so that you can understand in general terms what is going on. To
understand the source file in detail, you should read Chapter

The database is a sequence of “tokens,” which are normally separated
by spaces or line breaks. The only tokens that are built into the Metamath
language are those beginning with $. These tokens are called “keywords.”
All other tokens are user-defined, and their names are arbitrary.

As you might have guessed, the Metamath token $(starts a comment
and $) ends a comment.

The Metamath tokens $c, $v, $e, $f, $a, and $p specify “statements
that end with $. .

The Metamath tokens $c and $v each declare a list of user-defined tokens,
called “math symbols,” that the database will reference later on. All of the
math symbols they define you have seen earlier except the turnstile symbol
|- (), which is commonly used by logicians to mean “a proof exists for.’
For us the turnstile is just a convenient symbol that distinguishes expressions
that are axioms or theorems from expressions that are terms or wifs.

The $c statement declares “constants” and the $v statement declares
“variables” (or more precisely, metavariables). A variable may be substituted

b2

)

2.2. YOUR FIRST FORMAL SYSTEM 43

with sequences of math symbols whereas a constant may not be substituted
with anything.

It may seem redundant to require both $c and $v statements (since any
math symbol not specified with a $c statement could be presumed to be a
variable), but this provides for better error checking and also allows math
symbols to be redeclared (Section .

The token $f specifies a statement called a “variable-type hypothesis”
(also called a “floating hypothesis”) and $e specifies a “logical hypothesis”
(also called an “essential hypothesis”). The token $a specifies an “axiomatic
assertion,” and $p specifies a “provable assertion.” To the left of each
occurrence of these four tokens is a “label” that identifies the hypothesis or
assertion for later reference. For example, the label of the first axiomatic
assertion is tze. A $f statement must contain exactly two math symbols,
a constant followed by a variable. The $e, $a, and $p statements each
start with a constant followed by, in general, an arbitrary sequence of math
symbols.

Associated with each assertion is a set of hypotheses that must be sat-
isfied in order for the assertion to be used in a proof. These are called the
“mandatory hypotheses” of the assertion. Among those hypotheses whose
“scope” (described below) includes the assertion, $e hypotheses are always
mandatory and $f hypotheses are mandatory when they share their variable
with the assertion or its $e hypotheses. The exact rules for determining
which hypotheses are mandatory are described in detail in Sections and
428 For example, the mandatory hypotheses of assertion tpl are tt and
tr, whereas assertion tze has no mandatory hypotheses because it contains
no variables and has no $e hypothesis. Metamath’s show statement com-
mand, described in the next section, will show you a statement’s mandatory
hypotheses.

Sometimes we need to make a hypothesis relevant to only certain as-
sertions. The set of statements to which a hypothesis is relevant is called
its “scope.” The Metamath brackets, ${ and $}, define a “block” that
delimits the scope of any hypothesis contained between them. The assertion
mp has mandatory hypotheses wp, wq, min, and maj. The only mandatory
hypothesis of thi, on the other hand, is tt, since thl occurs outside of the
block containing min and maj.

Note that ${ and $} do not affect the scope of assertions ($a and $p).
Assertions are always available to be referenced by any later proof in the
source file.

Each provable assertion ($p statement) has two parts. The first part
is the assertion itself, which is a sequence of math symbol tokens placed
between the $p token and a $= token. The second part is a “proof,” which is
a list of label tokens placed between the $= token and the $. token that ends
the statement[f] The proof acts as a series of instructions to the Metamath

61f you’ve looked at the set.mm database, you may have noticed another notation used

44 CHAPTER 2. USING THE METAMATH PROGRAM

program, telling it how to build up the sequence of math symbols contained
in the assertion part of the $p statement, making use of the hypotheses of the
$p statement and previous assertions. The construction takes place according
to precise rules. If the list of labels in the proof causes these rules to be
violated, or if the final sequence that results does not match the assertion,
the Metamath program will notify you with an error message.

If you are familiar with reverse Polish notation (RPN), which is sometimes
used on pocket calculators, here in a nutshell is how a proof works. Each
hypothesis label in the proof is pushed onto the RPN stack as it is encountered.
Each assertion label pops off the stack as many entries as the referenced
assertion has mandatory hypotheses. Variable substitutions are computed
which, when made to the referenced assertion’s mandatory hypotheses, cause
these hypotheses to match the stack entries. These same substitutions are
then made to the variables in the referenced assertion itself, which is then
pushed onto the stack. At the end of the proof, there should be one stack
entry, namely the assertion being proved. This process is explained in detail
in Section 4.3

Metamath’s proof notation is not very readable for humans, but it allows
the proof to be stored compactly in a file. The Metamath program has proof
display features that let you see what’s going on in a more readable way, as
you will see in the next section.

The rules used in verifying a proof are not based on any built-in syntax of
the symbol sequence in an assertion nor on any built-in meanings attached to
specific symbol names. They are based strictly on symbol matching: constants
must match themselves, and variables may be replaced with anything that
allows a match to occur. For example, instead of term, 0, and |- we could
have just as well used yellow, zero, and provable, as long as we did so
consistently throughout the database. Also, we could have used is provable
(two tokens) instead of |- (one token) throughout the database. In each
of these cases, the proof would be exactly the same. The independence of
proofs and notation means that you have a lot of flexibility to change the
notation you use without having to change any proofs.

2.3 A Trial Run

Now you are ready to try out the Metamath program.

On all computer systems, Metamath has a standard “command line
interface” (CLI) that allows you to interact with it. You supply commands
to the CLI by typing them on the keyboard and pressing your keyboard’s
return key after each line you enter. The CLI is designed to be easy to use
and has built-in help features.

for proofs. The other notation is called “compressed.” It reduces the amount of space
needed to store a proof in the database and is described in Appendix [B] In the example
above, we use “normal” notation.

2.3. A TRIAL RUN 45

The first thing you should do is to use a text editor to create a file called
demoO.mm and type into it the Metamath source shown on p. Actually,
this file is included with your Metamath software package, so check that first.
If you type it in, make sure that you save it in the form of “plain ASCII text
with line breaks.” Most word processors will have this feature.

Next you must run the Metamath program. Depending on your computer
system and how Metamath is installed, this could range from clicking the
mouse on the Metamath icon to typing run metamath to typing simply
metamath. (Metamath’s help invoke command describes alternate ways of
invoking the Metamath program.)

When you first enter Metamath, it will be at the CLI, waiting for your
input. You will see something like the following on your screen:

Metamath - Version 0.177 27-Apr-2019
Type HELP for help, EXIT to exit.
MM>

The MM> prompt means that Metamath is waiting for a command. Command
keywords are not case sensitive; we will use lower-case commands in our
examples. The version number and its release date will probably be different
on your system from the one we show above.

The first thing that you need to do is to read in your databaseﬂ

MM> read demoO.mm

Remember to press the return key after entering this command. If you omit
the file name, Metamath will prompt you for one. The syntax for specifying
a Macintosh file name path is given in a footnote on p.|149

If there are any syntax errors in the database, Metamath will let you
know when it reads in the file. The one thing that Metamath does not check
when reading in a database is that all proofs are correct, because this would
slow it down too much. It is a good idea to periodically verify the proofs in a
database you are making changes to. To do this, use the following command
(and do it for your demoO.mm file now). Note that the * is a “wild card”
meaning all proofs in the file.

MM> verify proof *

Metamath will report any proofs that are incorrect.

It is often useful to save the information that the Metamath program
displays on the screen. You can save everything that happens on the screen
by opening a log file. You may want to do this before you read in a database
so that you can examine any errors later on. To open a log file, type

7If a directory path is needed on Unix, you should enclose the path/file name in quotes
to prevent Metamath from thinking that the / in the path name is a command qualifier,
e.g., read "db/set.mm". Quotes are optional when there is no ambiguity.

46 CHAPTER 2. USING THE METAMATH PROGRAM

MM> open log abc.log

This will open a file called abc.log, and everything that appears on the
screen from this point on will be stored in this file. The name of the log file
is arbitrary. To close the log file, type

MM> close log

Several commands let you examine what’s inside your database. Sec-
tion B.10] has an overview of some useful ones. The show labels command
lets you see what statement labels exist. A * matches any combination of
characters, and t* refers to all labels starting with the letter t. The /all is
a “command qualifier” that tells Metamath to include labels of hypotheses.
(To see the syntax explained, type help show labels.) Type

MM> show labels t* /all
Metamath will respond with

The statement number, label, and type are shown.
3 tt $f 4 tr $f 5 ts $f 8 tze $a
9 tpl $a 19 thl $p

You can use the show statement command to get information about
a particular statement. For example, you can get information about the
statement with label mp by typing

MM> show statement mp /full
Metamath will respond with

Statement 17 is located on line 43 of the file
"demoO.mm".
"Define the modus ponens inference rule"
17 mp $a |- Q $.
Its mandatory hypotheses in RPN order are:
wp $f wff P §.
wq $f wif Q $.
min $e |- P $.
maj $e |- (P -> Q) $.
The statement and its hypotheses require the
variables: Q P
The variables it contains are: Q P

The mandatory hypotheses and their order are useful to know when you are
trying to understand or debug a proof.

Now you are ready to look at what’s really inside our proof. First, here
is how to look at every step in the proof—mnot just the ones corresponding to
an ordinary formal proof, but also the ones that build up the formulas that
appear in each ordinary formal proof step.

2.3. A TRIAL RUN

47

MM> show proof thl /lemmon /all

O 00 ~NO O WN -

W W WNDNNDNNDNMDNMDNNNNMNNDMNERERRP P2 222
NP, O OWOWNOoOo DD WNEFE, O OWWONOOdd WNN = O

33
34

once you get used to it.

This will display the proof on the screen in the following format:

tt

tze

1,2 tpl
tt

3,4 weq
tt

tt

6,7 weq
tt

9 a2

tt

tze

11,12 tpl
tt

13,14 weq
tt

tze

16,17 tpl
tt

18,19 weq
tt

tt

21,22 weq
20,23 wim
tt

25 a2

tt

tze

27,28 tpl
tt

tt
29,30,31 a1l

15,24,26,32 mp $a |- ((t + 0)

$f
$a
$a
$f
$a
$f
$f
$a
$f
$a
$f
$a
$a
$f
$a
$f
$a
$a
$f
$a
$f
$f
$a
$a
$f
$a
$f
$a
$a
$f
$f
$a

term
term

term (t + 0)

t ~ O

term
wff (t+0) =t
term t

term t

wif t =t

term t
[-(Ct+0) =t
term t

term O

term (t + 0)
term t

wff (t+0) =t
term t

term O

term (t + 0)
term t

wff (t +0) =t
term t

term t

wif t =t

wif ((t +0)
term
¢
term
term
term

t->t=1t)

+ 0)

]
ot

term
term

- (

~ct ot ~O t o

ct
+
o
~
]
ct

-> ((
t >t
t >t

o
o o
t ot +
(RN}
NN

5,8,10,33 mp $a |-t =t

The /lemmon command qualifier specifies what is known as a Lemmon-
style display. Omitting the /lemmon qualifier results in a tree-style proof
(see p. for an example) that is somewhat less explicit but easier to follow

The first number on each line is the step number of the proof. Any
numbers that follow are step numbers assigned to the hypotheses of the

48 CHAPTER 2. USING THE METAMATH PROGRAM

statement referenced by that step. Next is the label of the statement
referenced by the step. The statement type of the statement referenced
comes next, followed by the math symbol string constructed by the proof up
to that step.

The last step, 34, contains the statement that is being proved.

Looking at a small piece of the proof, notice that steps 3 and 4 have
established that (t + 0) and t are terms, and step 5 makes use of steps
3 and 4 to establish that (t + 0) = t is a wff. Let Metamath itself tell
us in detail what is happening in step 5. Note that the “target hypothesis”
refers to where step 5 is eventually used, i.e., in step 34.

MM> show proof thl /detailed_step 5
Proof step 5: wp=weq $a wff (t + 0) =t
This step assigns source "weq" ($a) to target "wp"
($£). The source assertion requires the hypotheses
"tt" ($f, step 3) and "tr" ($f, step 4). The parent
assertion of the target hypothesis is "mp" ($a,
step 34).
The source assertion before substitution was:

weq $a wif t = r
The following substitutions were made to the source
assertion:

Variable Substituted with

t (t+0)

r t
The target hypothesis before substitution was:

wp $f wff P
The following substitution was made to the target
hypothesis:

Variable Substituted with

P (t+0) =t

The full proof just shown is useful to understand what is going on in
detail. However, most of the time you will just be interested in the “essential”
or logical steps of a proof, i.e. those steps that correspond to an ordinary
formal proof. If you type

MM> show proof thl /lemmon /renumber

you will see

1 a2 $a |- (t+0) =t

2 a2 $a |- (t+0) =t¢

3 al $a - ((Ct+0)=t->(C(Ct+0)
=t ->t=1t))

4 2,3 mp $a |- (C(Ct+0)=t >t =1t)

51,4 mp $a |-t =t

2.3. A TRIAL RUN 49

Compare this to the formal proof on p. and notice the resemblance. By
default Metamath does not show $f hypotheses and everything branching off
of them in the proof tree when the proof is displayed; this makes the proof
look more like an ordinary mathematical proof, which does not normally
incorporate the explicit construction of expressions. This is called the
“essential” view (at one time you had to add the /essential qualifier in the
show proof command to get this view, but this is now the default). You
can could use the /all qualifier in the show proof command to also show
the explicit construction of expressions. The /renumber qualifier means to
renumber the steps to correspond only to what is displayed.
To exit Metamath, type

MM> exit

2.3.1 Some Hints for Using the Command Line Inter-
face

We will conclude this quick introduction to Metamath with some helpful
hints on how to navigate your way through the commands.

When you type commands into Metamath’s CLI, you only have to type
as many characters of a command keyword as are needed to make it unam-
biguous. If you type too few characters, Metamath will tell you what the
choices are. In the case of the read command, only the r is needed to specify
it unambiguously, so you could have typed

MM> r demoO.mm
instead of
MM> read demoO.mm

In our description, we always show the full command words. When using the
Metamath CLI commands in a command file (to be read with the submit
command), it is good practice to use the unabbreviated command to ensure
your instructions will not become ambiguous if more commands are added
to the Metamath program in the future.

The command keywords are not case sensitive; you may type either read
or ReAd. File names may or may not be case sensitive, depending on your
computer’s operating system. Metamath label and math symbol tokens are
case-sensitive.

The help command will provide you with a list of topics you can get
help on. You can then type help topic to get help on that topic.

If you are uncertain of a command’s spelling, just type as many characters
as you remember of the command. If you have not typed enough characters
to specify it unambiguously, Metamath will tell you what choices you have.

o0 CHAPTER 2. USING THE METAMATH PROGRAM

MM> show s
?Ambiguous keyword - please specify SETTINGS,
STATEMENT, or SOURCE.

If you don’t know what argument to use as part of a command, type a ?
at the argument position. Metamath will tell you what it expected there.

MM> show 7
?Expected SETTINGS, LABELS, STATEMENT, SOURCE, PROOF,
MEMORY, TRACE_BACK, or USAGE.

Finally, you may type just the first word or words of a command followed
by return. Metamath will prompt you for the remaining part of the command,
showing you the choices at each step. For example, instead of typing show
statement thl /full you could interact in the following manner:

MM> show

SETTINGS, LABELS, STATEMENT, SOURCE, PROQOF,
MEMORY, TRACE_BACK, or USAGE <SETTINGS>? st
What is the statement label <th1>?7

/ or nothing <nothing>? /

TEX, COMMENT_ONLY, or FULL <TEX>? f

/ or nothing <nothing>?

19 thl1 $p I-t =1t $= ... §.

After each 7 in this mode, you must give Metamath the information it
requests. Sometimes Metamath gives you a list of choices with the default
choice indicated by brackets < > . Pressing return after the 7 will select the
default choice. Answering anything else will override the default. Note that
the / in command qualifiers is considered a separate token by the parser,
and this is why it is asked for separately.

2.4 Your First Proof

Proofs are developed with the aid of the Proof Assistant. We will now show
you how the proof of theorem th1l was built. So that you can repeat these
steps, we will first have the Proof Assistant erase the proof in Metamath’s
source buffer, then reconstruct it. (The source buffer is the place in memory
where Metamath stores the information in the database when it is read in.
New or modified proofs are kept in the source buffer until a write source
command is issued.) In practice, you would place a ? between $= and $.
in the database to indicate to Metamath that the proof is unknown, and
that would be your starting point. Whenever the verify proof command

2.4. YOUR FIRST PROOF o1

encounters a proof with a ? in place of a proof step, the statement is identified
as not proved.

When I first started creating Metamath proofs, I would write down on a
piece of paper the complete formal proof as it would appear in a show proof
command; see the display of show proof thl /lemmon /renumber above
as an example. After you get used to using the Proof Assistant you may get
to a point where you can “see” the proof in your mind and let the Proof
Assistant guide you in filling in the details, at least for simpler proofs, but
until you gain that experience you may find it very useful to write down all
the details in advance. Otherwise you may waste a lot of time as you let it
take you down a wrong path. However, others do not find this approach as
helpful. For example, Thomas Brendan Leahy finds that it is more helpful
to him to interactively work backward from a machine-readable statement.
David A. Wheeler writes down a general approach, but develops the proof
interactively by switching between working forwards (from hypotheses and
facts likely to be useful) and backwards (from the goal) until the forwards
and backwards approaches meet. In the end, use whatever approach works
for you.

A proof is developed with the Proof Assistant by working backwards,
starting with the theorem to be proved, and assigning each unknown step
with a theorem or hypothesis until no more unknown steps remain. The
Proof Assistant will not let you make an assignment unless it can be “unified”
with the unknown step. This means that a substitution of variables exists
that will make the assignment match the unknown step. On the other
hand, in the middle of a proof, when working backwards, often more than
one unification (set of substitutions) is possible, since there is not enough
information available at that point to uniquely establish it. In this case you
can tell Metamath which unification to choose, or you can continue to assign
unknown steps until enough information is available to make the unification
unique.

We will assume you have entered Metamath and read in the database as
described above. The following dialog shows how the proof was developed.
For more details on what some of the commands do, refer to Section [5.6

MM> prove thl

Entering the Proof Assistant. Type HELP for help, EXIT

to exit. You will be working on the proof of statement thil:
$p I-t =t

Note: The proof you are starting with is already complete.

MM-PA>

The MM-PA> prompt means we are inside the Proof Assistant. Most of
the regular Metamath commands (show statement, etc.) are still available
if you need them.

MM-PA> delete all

52 CHAPTER 2. USING THE METAMATH PROGRAM

The entire proof was deleted.
We have deleted the whole proof so we can start from scratch.

MM-PA> show new_proof/lemmon/all
17 $7 I-t =1

The show new_proof command is like show proof except that we don’t
specify a statement; instead, the proof we’re working on is displayed.

MM-PA> assign 1 mp

To undo the assignment, DELETE STEP 5 and INITIALIZE, UNIFY
if needed.

3 min=7 $7 |- $2

4 maj=7 $7 |- ($2 >t =1t)

The assign command above means “assign step 1 with the statement
whose label is mp.” Note that step renumbering will constantly occur as you
assign steps in the middle of a proof; in general all steps from the step you
assign until the end of the proof will get moved up. In this case, what used
to be step 1 is now step 5, because the (partial) proof now has five steps:
the four hypotheses of the mp statement and the mp statement itself. Let’s
look at all the steps in our partial proof:

MM-PA> show new_proof/lemmon/all

17 $7 wff $2

27 $7 wff t = t

37 $7 |- $2

47 $7 |- ($2 >t =1t)
51,2,3,4 mp $a |-t =t

The symbol $2 is a temporary variable that represents a symbol sequence
not yet known. In the final proof, all temporary variables will be eliminated.
The general format for a temporary variable is $ followed by an integer. Note
that $ is not a legal character in a math symbol (see Section p. [117),
so there will never be a naming conflict between real symbols and temporary
variables.

Unknown steps 1 and 2 are constructions of the two wifs used by the
modus ponens rule. As you will see at the end of this section, the Proof
Assistant can usually figure these steps out by itself, and we will not have to
worry about them. Therefore from here on we will display only the “essential”
hypotheses, i.e. those steps that correspond to traditional formal proofs.

MM-PA> show new_proof/lemmon

37 $7 |- $2

47 $7 |- ($2 >t =1t)
5 3,4 mp $a |-t =t

2.4. YOUR FIRST PROOF 93

Unknown steps 3 and 4 are the ones we must focus on. They correspond
to the minor and major premises of the modus ponens rule. We will assign
them as follows. Notice that because of the step renumbering that takes
place after an assignment, it is advantageous to assign unknown steps in
reverse order, because earlier steps will not get renumbered.

MM-PA> assign 4 mp
To undo the assignment, DELETE STEP 8 and INITIALIZE, UNIFY
if needed.

3 min=7 $7 |- $2
6 min=7 $7 |- $4
7 maj=? $7 |- ($4 > ($2 >t =1t))

We are now going to describe an obscure feature that you will probably
never use but should be aware of. The Metamath language allows empty
symbol sequences to be substituted for variables, but in most formal systems
this feature is never used. One of the few examples where is it used is the
MIU-system described in Appendix But such systems are rare, and by
default this feature is turned off in the Proof Assistant. (It is always allowed
for verify proof.) Let us turn it on and see what happens.

MM-PA> set empty_substitution on
Substitutions with empty symbol sequences is now allowed.

With this feature enabled, more unifications will be ambiguous in the
middle of a proof, because substitution of variables with empty symbol
sequences will become an additional possibility. Let’s see what happens when
we make our next assignment.

MM-PA> assign 3 a2
There are 2 possible unifications. Please select the correct
one or Q if you want to UNIFY later.
Unify: |- $6
with: |- ($9 + 0) = §9
Unification #1 of 2 (weight = 7):
Replace "$6" with "(+ 0) ="
Replace "$9" with ""
Accept (A), reject (R), or quit (Q) <A>? r

The first choice presented is the wrong one. If we had selected it, tempo-
rary variable $6 would have been assigned a truncated wff, and temporary
variable $9 would have been assigned an empty sequence (which is not al-
lowed in our system). With this choice, eventually we would reach a point
where we would get stuck because we would end up with steps impossible to
prove. (You may want to try it.) We typed r to reject the choice.

54 CHAPTER 2. USING THE METAMATH PROGRAM

Unification #2 of 2 (weight = 21):

Replace "$6" with "($9 + 0) = $9"

Accept (A), reject (R), or quit (Q) <A>? q
To undo the assignment, DELETE STEP 4 and INITIALIZE, UNIFY
if needed.

7 min=? §7 |- $8

8 maj=? $7 |- ($8 > ($6 >t =1t))

The second choice is correct, and normally we would type a to accept it.
But instead we typed q to show what will happen: it will leave the step with
an unknown unification, which can be seen as follows:

MM-PA> show new_proof/not_unified
4 min $a |- %6
=a2 = |- ($9+0) = %9

Later we can unify this with the unify all/interactive command.

The important point to remember is that occasionally you will be pre-
sented with several unification choices while entering a proof, when the
program determines that there is not enough information yet to make an
unambiguous choice automatically (and this can happen even with set
empty_substitution turned off). Usually it is obvious by inspection which
choice is correct, since incorrect ones will tend to be meaningless fragments
of wifs. In addition, the correct choice will usually be the first one presented,
unlike our example above.

Enough of this digression. Let us go back to the default setting.

MM-PA> set empty_substitution off

The ability to substitute empty expressions for variables
has been turned off. Note that this may make the Proof
Assistant too restrictive in some cases.

If we delete the proof, start over, and get to the point where we digressed
above, there will no longer be an ambiguous unification.

MM-PA> assign 3 a2
To undo the assignment, DELETE STEP 4 and INITIALIZE, UNIFY
if needed.

7 min=7? $7 |- $4

8 maj=? $? |- ($4 > (($5+0) =985 >t =1t))

Let us look at our proof so far, and continue.
MM-PA> show new_proof/lemmon

4 a2 $a |- (5 +0) = $5
77 $7 |- $4

2.4. YOUR FIRST PROOF %)

87 $7 |- ($4 > (($5+0) =85 >t =1t))
9 7,8 mp $a |- (($5+0) =8$5 >t =1t)
10 4,9 mp $a |-t =t

MM-PA> assign 8 al
To undo the assignment, DELETE STEP 11 and INITIALIZE, UNIFY
if needed.
7 min=? $7 |- (t +0) =t
MM-PA> assign 7 a2
To undo the assignment, DELETE STEP 8 and INITIALIZE, UNIFY
if needed.
MM-PA> show new_proof/lemmon

4 a2 $a |- (t+0) =1t

8 a2 $a |- (t +0) =t

12 al $a |- ((t+0)=%t->((t+0) =1t —>
t=t))

13 8,12 mp $a |- ((Ct+0)=t >t=1t)

14 4,13 mp $a |-t =1t

Now all temporary variables and unknown steps have been eliminated
from the “essential” part of the proof. When this is achieved, the Proof
Assistant can usually figure out the rest of the proof automatically. (Note
that the improve command can occasionally be useful for filling in essential
steps as well, but it only tries to make use of statements that introduce no
new variables in their hypotheses, which is not the case for mp. Also it will
not try to improve steps containing temporary variables.) Let’s look at the
complete proof, then run the improve command, then look at it again.

MM-PA> show new_proof/lemmon/all

17 $7 wff (t +0) =1t

27 $7 wff t = ¢t

37 $7 term t

4 3 a2 $a |- (t+0) =1t

57 $7 wff (t +0) =t

6 7 $7 wff ((t+0) =t >t=1t)

77 $7 term t

8 7 a2 $a |- (t+0) =t

9 7 $7 term (t + 0)
10 7 $7 term t
11 7 $7 term t
12 9,10,11 al $a |- ((t+0)=t>(C(t+0)=1t >

t=t))

135,6,8,12mp $a |- ((t+0) =t ->t=1t)
14 1,2,4,13mp S$a |-t =1t

MM-PA> improve all

o6 CHAPTER 2. USING THE METAMATH PROGRAM
A proof of length 1 was found for step 11.
A proof of length 1 was found for step 10.
A proof of length 3 was found for step 9.
A proof of length 1 was found for step 7.
A proof of length 9 was found for step 6.
A proof of length 5 was found for step 5.
A proof of length 1 was found for step 3.
A proof of length 3 was found for step 2.
A proof of length 5 was found for step 1.

Steps 1 and above have been renumbered.
CONGRATULATIONS! The proof is complete. Use SAVE
NEW_PROOF to save it. Note: The Proof Assistant does
not detect $d violations. After saving the proof, you
should verify it with VERIFY PROOF.

The save new_proof command will save the proof in the database. Here
we will just display it in a form that can be clipped out of a log file and
inserted manually into the database source file with a text editor.

MM-PA> show new_proof/normal
————————— Clip out the proof below this line:
tt tze tpl tt weq tt tt weq tt a2 tt tze tpl tt weq
tt tze tpl tt weq tt tt weq wim tt a2 tt tze tpl tt
tt al mp mp $.
————————— The proof of ’thl’ to clip out ends above this line.

There is another proof format called “compressed” that you will see
in databases. It is not important to understand how it is encoded but
only to recognize it when you see it. Its only purpose is to reduce storage
requirements for large proofs. A compressed proof can always be converted
to a normal one and vice-versa, and the Metamath show proof commands
work equally well with compressed proofs. The compressed proof format is
described in Appendix

MM-PA> show new_proof/compressed

————————— Clip out the proof below this line:
(tze tpl weq a2 wim al mp) ABCZADZAADZAEZJJKFLIA
AGHH $.

————————— The proof of ’thl’ to clip out ends above this line.

Now we will exit the Proof Assistant. Since we made changes to the
proof, it will warn us that we have not saved it. In this case, we don’t care.

MM-PA> exit
Warning: You have not saved changes to the proof.
Do you want to EXIT anyway (Y, N) <N>?7 y

2.5. A NOTE ABOUT EDITING A DATABASE FILE o7

Exiting the Proof Assistant.
Type EXIT again to exit Metamath.

The Proof Assistant has several other commands that can help you while
creating proofs. See Section for a list of them.

A command that is often useful is minimize_with */brief, which tries
to shorten the proof. It can make the process more efficient by letting you
write a somewhat “sloppy” proof then clean up some of the fine details of
optimization for you (although it can’t perform miracles such as restructuring
the overall proof).

2.5 A Note About Editing a Database File

Once your source file contains proofs, there are some restrictions on how
you can edit it so that the proofs remain valid. Pay particular attention to
these rules, since otherwise you can lose a lot of work. It is a good idea to
periodically verify all proofs with verify proof * to ensure their integrity.

If your file contains only normal (as opposed to compressed) proofs, the
main rule is that you may not change the order of the mandatory hypotheses
of any statement referenced in a later proof. For example, if you swap
the order of the major and minor premise in the modus ponens rule, all
proofs making use of that rule will become incorrect. The show statement
command will show you the mandatory hypotheses of a statement and their
order.

If a statement has a compressed proof, you also must not change the order
of its mandatory hypotheses. The compressed proof format makes use of this
information as part of the compression technique. Note that swapping the
names of two variables in a theorem will change the order of its mandatory
hypotheses.

The safest way to edit a statement, say mytheorem, is to duplicate it
then rename the original to mytheoremOLD throughout the database. Once
the edited version is re-proved, all statements referencing mytheorem0OLD
can be updated in the Proof Assistant using minimize_with mytheorem
/allow_growth.

o8

CHAPTER 2. USING THE METAMATH PROGRAM

Chapter 3

Abstract Mathematics
Revealed

3.1 Logic and Set Theory

Set theory can be viewed as a form of exact theology.

Rupy RUckerl

Despite its seeming complexity, all of standard mathematics, no matter
how deep or abstract, can amazingly enough be derived from a relatively
small set of axioms or first principles. The development of these axioms is
among the most impressive and important accomplishments of mathematics
in the 20th century. Ultimately, these axioms can be broken down into a set
of rules for manipulating symbols that any technically oriented person can
follow.

We will not spend much time trying to convey a deep, higher-level
understanding of the meaning of the axioms. This kind of understanding
requires some mathematical sophistication as well as an understanding of the
philosophy underlying the foundations of mathematics and typically develops
over time as you work with mathematics. Our goal, instead, is to give you
the immediate ability to follow how theorems are derived from the axioms
and from other theorems. This will be similar to learning the syntax of a
computer language, which lets you follow the details in a program but does
not necessarily give you the ability to write non-trivial programs on your own,
an ability that comes with practice. For now don’t be alarmed by abstract-
sounding names of the axioms; just focus on the rules for manipulating the
symbols, which follow the simple conventions of the Metamath language.

3], p. 31.

59

60 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

The axioms that underlie all of standard mathematics consist of axioms
of logic and axioms of set theory. The axioms of logic are divided into two
subcategories, propositional calculus (sometimes called sentential logic) and
predicate calculus (sometimes called first-order logic or quantifier theory).
Propositional calculus is a prerequisite for predicate calculus, and predicate
calculus is a prerequisite for set theory. The version of set theory most
commonly used is Zermelo—Fraenkel set theory with the axiom of choice,
often abbreviated as ZFC.

Here in a nutshell is what the axioms are all about in an informal way.
The connection between this description and symbols we will show you won’t
be immediately apparent and in principle needn’t ever be. Our description
just tries to summarize what mathematicians think about when they work
with the axioms.

Logic is a set of rules that allow us determine truths given other truths.
Put another way, logic is more or less the translation of what we would
consider common sense into a rigorous set of axioms. Suppose ¢, 1, and x
(the Greek letters phi, psi, and chi) represent statements that are either true
or false, and x is a variable ranging over some group of mathematical objects
(sets, integers, real numbers, etc.). In mathematics, a “statement” really
means a formula, and 1 could be for example “x = 2.” Propositional calculus
allows us to use variables that are either true or false and make deductions
such as “if ¢ implies ¥ and 1 implies ¥, then ¢ implies x.” Predicate calculus
extends propositional calculus by also allowing us to discuss statements about
objects (not just true and false values), including statements about “all” or
“at least one” object. For example, predicate calculus allows to say, “if ¢
is true for all z, then ¢ is true for some z.” The logic used in set.mm is
standard classical logic (as opposed to other logic systems like intuitionistic
logic).

Set theory has to do with the manipulation of objects and collections of
objects, specifically the abstract, imaginary objects that mathematics deals
with, such as numbers. Everything that is claimed to exist in mathematics
is considered to be a set. A set called the empty set contains nothing. We
represent the empty set by @. Many sets can be built up from the empty
set. There is a set represented by {@} that contains the empty set, another
set represented by {&, {@}} that contains this set as well as the empty set,
another set represented by {{@}} that contains just the set that contains
the empty set, and so on ad infinitum. All mathematical objects, no matter
how complex, are defined as being identical to certain sets: the integer 0
is defined as the empty set, the integer 1 is defined as {&}, the integer 2
is defined as {&, {@}}. (How these definitions were chosen doesn’t matter
now, but the idea behind it is that these sets have the properties we expect
of integers once suitable operations are defined.) Mathematical operations,
such as addition, are defined in terms of operations on sets—their union,
intersection, and so on—operations you may have used in elementary school

3.1. LOGIC AND SET THEORY 61

when you worked with groups of apples and oranges.

With a leap of faith, the axioms also postulate the existence of infinite
sets, such as the set of all non-negative integers (0,1,2,..., also called
“natural numbers”). This set can’t be represented with the brace notation
we just showed you, but requires a more complicated notation called “class
abstraction.” For example, the infinite set {z|“z is a natural number”}
means the “set of all objects x such that z is a natural number” i.e. the set
of natural numbers; here, “z is a natural number” is a rather complicated
formula when broken down into the primitive symbolsﬂ Actually, the
primitive symbols don’t even include the brace notation. The brace notation
is a high-level definition, which you can find in Section

Interestingly, the arithmetic of integers and rationals can be developed
without appealing to the existence of an infinite set, whereas the arithmetic
of real numbers requires it.

Each variable in the axioms of set theory represents an arbitrary set, and
the axioms specify the legal kinds of things you can do with these variables
at a very primitive level.

Now, you may think that numbers and arithmetic are a lot more intu-
itive and fundamental than sets and therefore should be the foundation of
mathematics. What is really the case is that you've dealt with numbers all
your life and are comfortable with a few rules for manipulating them such
as addition and multiplication. Those rules only cover a small portion of
what can be done with numbers and only a very tiny fraction of the rest of
mathematics. If you look at any elementary book on number theory, you will
quickly become lost if these are the only rules that you know. Even though
such books may present a list of “axioms” for arithmetic, the ability to use
the axioms and to understand proofs of theorems (facts) about numbers
requires an implicit mathematical talent that frustrates many people from
studying abstract mathematics. The kind of mathematics that most people
know limits them to the practical, everyday usage of blindly manipulating
numbers and formulas, without any understanding of why those rules are
correct nor any ability to go any further. For example, do you know why
multiplying two negative numbers yields a positive number? Starting with
set theory, you will also start off blindly manipulating symbols according to

2The statement “z is a natural number” is formally expressed as “z € w,” where
€ (stylized epsilon) means “is in” or “is an element of” and w (omega) means “the set
of natural numbers.” When “z € w” is completely expanded in terms of the primitive
symbols of set theory, the resultis = (= (Vz (- Vw(z€w > -"weE€x)—>z€E€zx)
s (Vz(~(Vw(wez—owez)>Vwwez)—>Vw(wez— Vv (ve
z—HvEw)))—=>VzVw (- (z€z—-~weEzr)= (-ze€w—=>(~z=w—
wez)))))—=Vy(~(~(Vz(~Vw(zew—s-wey)—sze€y)—>(Vz(
“(Vw(wez—swey)mVw-wez) > Vw(wez—>Vv(veEz— v
cw)))=>VzVw (- (zey—>-wey)=>(zew—=>(z=w—-wez)))
)= (Vz-zey—s " Vw(~(weEy—s-Vz(weEz—os2€y))—> (V=2
(wez—-z€y)—>wey)))) >z E€y))). Section[3.4shows the hierarchy of
definitions that leads up to this expression.

62 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

the rules we give you, but with the advantage that these rules will allow you,
in principle, to access all of mathematics, not just a tiny part of it.

Of course, concrete examples are often helpful in the learning process.
For example, you can verify that 2 -3 = 3 -2 by actually grouping objects
and can easily “see” how it generalizes to x -y = y - x, even though you might
not be able to rigorously prove it. Similarly, in set theory it can be helpful to
understand how the axioms of set theory apply to (and are correct for) small
finite collections of objects. You should be aware that in set theory intuition
can be misleading for infinite collections, and rigorous proofs become more
important. For example, while -y = y- x is correct for finite ordinals (which
are the natural numbers), it is not usually true for infinite ordinals.

3.2 The Axioms for All of Mathematics

In this section, we will show you the axioms for all of standard mathematics
(i.e. logic and set theory) as they are traditionally presented. The traditional
presentation is useful for someone with the mathematical experience needed
to correctly manipulate high-level abstract concepts. For someone without
this talent, knowing how to actually make use of these axioms can be difficult.
The purpose of this section is to allow you to see how the version of the
axioms used in the standard Metamath database set .mm relates to the typical
version in textbooks, and also to give you an informal feel for them.

3.2.1 Propositional Calculus

Propositional calculus concerns itself with statements that can be interpreted
as either true or false. Some examples of statements (outside of mathematics)
that are either true or false are “It is raining today” and “The United States
has a female president.” In mathematics, as we mentioned, statements are
really formulas.

In propositional calculus, we don’t care what the statements are. We also
treat a logical combination of statements, such as “It is raining today and the
United States has a female president,” no differently from a single statement.
Statements and their combinations are called well-formed formulas (wffs).
We define wifs only in terms of other wifs and don’t define what a “starting”
wif is. As is common practice in the literature, we use Greek letters to
represent wifs.

Specifically, suppose ¢ and 1 are wifs. Then the combinations ¢ —
(“p implies ¥,” also read “if ¢ then ¥") and —¢ (“not ¢”) are also wils.

T]%e three axioms of propositional calculus are all wifs of the following
form

3A remarkable result of C. A. Meredith squeezes these three axioms into the single
axiom ((((¢ = %) = (=x — —0)) = x) = 7) = ((t = ») = (0 = ¥)) [44], which is
believed to be the shortest possible.

3.2. THE AXIOMS FOR ALL OF MATHEMATICS 63

o= (=)
(=W —=x) = (p—=9) = (X))
(= =) = (Y — @)

These three axioms are widely used. They are attributed to Jan Lukasiewicz
(pronounced woo-kah-SHAY-vitch) and was popularized by Alonzo Church,
who called it system P2. (Thanks to Ted Ulrich for this information.)

There are an infinite number of axioms, one for each possible wif of the
above form. (For this reason, axioms such as the above are often called
“axiom schemes.”) Each Greek letter in the axioms may be substituted with
a more complex wif to result in another axiom. For example, substituting
—(¢ — x) for ¢ in the first axiom yields ~(¢ — x) = (¥ — (¢ = X)),
which is still an axiom.

To deduce new true statements (theorems) from the axioms, a rule called
“modus ponens” is used. This rule states that if the wif ¢ is an axiom or a
theorem, and the wff ¢ — 1 is an axiom or a theorem, then the wif 1) is also
a theorem.

As a non-mathematical example of modus ponens, suppose we have
proved (or taken as an axiom) “Bob is a man” and separately have proved
(or taken as an axiom) “If Bob is a man, then Bob is a human.” Using the
rule of modus ponens, we can logically deduce, “Bob is a human.”

From Metamath’s point of view, the axioms and the rule of modus ponens
just define a mechanical means for deducing new true statements from existing
true statements, and that is the complete content of propositional calculus
as far as Metamath is concerned. You can read a logic textbook to gain a
better understanding of their meaning, or you can just let their meaning
slowly become apparent to you after you use them for a while.

It is actually rather easy to check to see if a formula is a theorem of
propositional calculus. Theorems of propositional calculus are also called
“tautologies.” The technique to check whether a formula is a tautology is
called the “truth table method,” and it works like this. A wff ¢ — ¥ is
false whenever ¢ is true and ¢ is false. Otherwise it is true. A wif -y is
false whenever ¢ is true and false otherwise. To verify a tautology such as
© — (1 =), you break it down into sub-wffs and construct a truth table
that accounts for all possible combinations of true and false assigned to the
wif metavariables:

le v]v—oele—= W= |
TIT| T T
TIF| T T
F|T| F T
FIF| T T

If all entries in the last column are true, the formula is a tautology.
Now, the truth table method doesn’t tell you how to prove the tautology
from the axioms, but only that a proof exists. Finding an actual proof

64 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

(especially one that is short and elegant) can be challenging. Methods do
exist for automatically generating proofs in propositional calculus, but the
proofs that result can sometimes be very long. In the Metamath set.mm
database, most or all proofs were created manually.

Section [3.4.1] discusses various definitions that make propositional calculus
easier to use. For example, we define:

e oV is true if either ¢ or ¢ (or both) are true (this is disjunction aka
logical OR).

e A is true if both ¢ and 1 are true (this is conjunction aka logical
AND).

e ¢ <> 1 is true if ¢ and ¥ have the same value, that is, they are both
true or both false (this is the biconditional).

3.2.2 Predicate Calculus

Predicate calculus introduces the concept of “individual variables,” which we
will usually just call “variables.” These variables can represent something
other than true or false (wffs), and will always represent sets when we get
to set theory. There are also three new symbols V, =, and €, read “for all,”
“equals,” and “is an element of” respectively. We will represent variables
with the letters x, y, z, and w, as is common practice in the literature. For
example, Yz means “for all possible values of x, ¢ is true.”

In predicate calculus, we extend the definition of a wff. If ¢ is a wif
and x and y are variables, then Vz ¢, x =y, and « € y are wifs. Note that
these three new types of wifs can be considered “starting” wifs from which
we can build other wffs with — and — . The concept of a starting wif was
absent in propositional calculus. But starting wif or not, all we are really
concerned with is whether our wifs are correctly constructed according to
these mechanical rules.

A quick aside: To prevent confusion, it might be best at this point to
think of the variables of Metamath as “metavariables,” because they are not
quite the same as the variables we are introducing here. A (meta)variable
in Metamath can be a wff or an individual variable, as well as many other
things; in general, it represents a kind of place holder for an unspecified
sequence of math symbols.

Unlike propositional calculus, no decision procedure analogous to the
truth table method exists (nor theoretically can exist) that will definitely
determine whether a formula is a theorem of predicate calculus. Much of
the work in the field of automated theorem proving has been dedicated to
coming up with clever heuristics for proving theorems of predicate calculus,
but they can never be guaranteed to work always.

3.2. THE AXIOMS FOR ALL OF MATHEMATICS 65

Section discusses various definitions that make predicate calculus
easier to use. For example, we define dxp to mean “there exists at least one
possible value of where ¢ is true.”

We now turn to looking at how predicate calculus can be formally repre-
sented.

Common Axioms

There is a new rule of inference in predicate calculus: if ¢ is an axiom or a
theorem, then Vz ¢ is also a theorem. This is called the rule of “generalization.’
This is easily represented in Metamath.

In standard texts of logic, there are often two axioms of predicate calculus:

)

Va o(x) — ¢(y), where “y is properly substituted for z.”
Va(e —) = (¢ = Va), where “x is not free in ¢.”

Now at first glance, this seems simple: just two axioms. However, condi-
tional clauses are attached to each axiom describing requirements that may
seem puzzling to you. In addition, the first axiom puts a variable symbol in
parentheses after each wif, seemingly violating our definition of a wif; this is
just an informal way of referring to some arbitrary variable that may occur
in the wff. The conditional clauses do, of course, have a precise meaning, but
as it turns out the precise meaning is somewhat complicated and awkward to
formalize in a way that a computer can handle easily. Unlike propositional
calculus, a certain amount of mathematical sophistication and practice is
needed to be able to easily grasp and manipulate these concepts correctly.

Predicate calculus may be presented with or without axioms for equality.
We will require the axioms of equality as a prerequisite for the version of
set theory we will use. The axioms for equality, when included, are often
represented using these two axioms:

r =2

z =y — (p(x,z) = p(z,y)) where “p(z,y) arises from @(z,z) by replacing
some, but not necessarily all, free occurrences of x by y,
provided that y is free for z in ¢(z,x).”

The first equality axiom is simple, but again, the condition on the second
one is somewhat awkward to implement on a computer.

Tarski System S2

Of course, we are not the first to notice the complications of these predicate
calculus axioms when being rigorous.

Well-known logician Alfred Tarski published in 1965 a system he called
system S2[69, p. 77]. Tarski’s system is ezactly equivalent to the traditional
textbook formalization, but (by clever use of equality axioms) it eliminates

66 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

7

the latter’s primitive notions of “proper substitution” and “free variable,
replacing them with direct substitution and the notion of a variable not
occurring in a formula (which we express with distinct variable constraints).

In advocating his system, Tarski wrote, “The relatively complicated
character of [free variables and proper substitution] is a source of certain
inconveniences of both practical and theoretical nature; this is clearly experi-
enced both in teaching an elementary course of mathematical logic and in
formalizing the syntax of predicate logic for some theoretical purposes” [69]
p. 61].

Developing a Metamath Representation

The standard textbook axioms of predicate calculus are somewhat cum-
bersome to implement on a computer because of the complex notions of
“free variable” and “proper substitution.” While it is possible to use the
Metamath language to implement these concepts, we have chosen not to
implement them as primitive constructs in the set.mm set theory database.
Instead, we have eliminated them within the axioms by carefully crafting
the axioms so as to avoid them, building on Tarski’s system S2. This makes
it easy for a beginner to follow the steps in a proof without knowing any
advanced concepts other than the simple concept of replacing variables with
expressions.

In order to develop the concepts of free variable and proper substitution
from the axioms, we use an additional Metamath statement type called
“disjoint variable restriction” that we have not encountered before. In the
context of the axioms, the statement $d x y simply means that z and y must
be distinct, i.e. they may not be simultaneously substituted with the same
variable. The statement $d x ¢ means variable z must not occur in wif .
For the precise definition of $d, see Section

Metamath representation

The Metamath axiom system for predicate calculus defined in set.mm uses
Tarski’s system S2. As noted above, this has a different representation
than the traditional textbook formalization, but it is exactly equivalent to
the textbook formalization, and it is much easier to work with. This is
reproduced as system S3 in Section 6 of Megill’s formalization [41].

There is one exception, Tarski’s axiom of existence, which we label as
axiom ax-6. In the case of ax-6, Tarski’s version is weaker because it includes
a distinct variable proviso. If we wish, we can also weaken our version in
this way and still have a metalogically complete system. Theorem ax6 shows
this by deriving, in the presence of the other axioms, our ax-6 from Tarski’s
weaker version ax6v. However, we chose the stronger version for our system
because it is simpler to state and easier to use.

3.2. THE AXIOMS FOR ALL OF MATHEMATICS 67

Tarski’s system was designed for proving specific theorems rather than
more general theorem schemes. However, theorem schemes are much more ef-
ficient than specific theorems for building a body of mathematical knowledge,
since they can be reused with different instances as needed. While Tarski
does derive some theorem schemes from his axioms, their proofs require
concepts that are “outside” of the system, such as induction on formula
length. The verification of such proofs is difficult to automate in a proof ver-
ifier. (Specifically, Tarski treats the formulas of his system as set-theoretical
objects. In order to verify the proofs of his theorem schemes, a proof verifier
would need a significant amount of set theory built into it.)

The Metamath axiom system for predicate calculus extends Tarski’s
system to eliminate this difficulty. The additional “auxilliary” axiom schemes
(as we will call them in this section; see below) endow Tarski’s system with
a nice property we call metalogical completeness [41, Remark 9.6]. As
a result, we can prove any theorem scheme expressable in the “simple
metalogic” of Tarski’s system by using only Metamath’s direct substitution
rule applied to the axiom system (and no other metalogical or set-theoretical
notions “outside” of the system). Simple metalogic consists of schemes
containing wif metavariables (with no arguments) and/or set (also called
“individual”) metavariables, accompanied by optional provisos each stating
that two specified set metavariables must be distinct or that a specified set
metavariable may not occur in a specified wff metavariable. Metamath’s logic
and set theory axiom and rule schemes are all examples of simple metalogic.
The schemes of traditional predicate calculus with equality are examples
which are not simple metalogic, because they use wif metavariables with
arguments and have “free for” and “not free in” side conditions.

A rigorous justification for this system, using an older but exactly equiv-
alent set of axioms, can be found in [41].

This allows us to take a different approach in the Metamath database
set.mm. We do not directly use the primitive notions of “free variable” and
“proper substitution” at all as primitive constructs. Instead, we use a set of
axioms that are almost as simple to manipulate as those of propositional
calculus. Our axiom system avoids complex primitive notions by effectively
embedding the complexity into the axioms themselves. As a result, we will
end up with a larger number of axioms, but they are ideally suited for a
computer language such as Metamath. (Section shows these axioms.)

We will not elaborate further on the “free variable” and “proper sub-
stitution” concepts here. You may consult [2I, ch. 3—4] (as well as many
other books) for a precise explanation of these concepts. If you intend to do
serious mathematical work, it is wise to become familiar with the traditional
textbook approach; even though the concepts embedded in their axioms re-
quire a higher level of sophistication, they can be more practical to deal with
on an everyday, informal basis. Even if you are just developing Metamath
proofs, familiarity with the traditional approach can help you arrive at a

68 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

proof outline much faster, which you can then convert to the detail required
by Metamath.

We do develop proper substitution rules later on, but in set.mm they are
defined as derived constructs; they are not primitives.

You should also note that our system of predicate calculus is specifically
tailored for set theory; thus there are only two specific predicates = and €
and no functions or constants unlike more general systems. We later add
these.

3.2.3 Set Theory

Traditional Zermelo—Fraenkel set theory with the Axiom of Choice has 10
axioms, which can be expressed in the language of predicate calculus. In this
section, we will list only the names and brief English descriptions of these
axioms, since we will give you the precise formulas used by the Metamath
set theory database set.mm later on.

In the descriptions of the axioms, we assume that z, y, z, w, and v
represent sets. These are the same as the variables in our predicate calculus
system above, except that now we informally think of the variables as ranging
over sets. Note that the terms “object,” “set,” “element,” “collection,” and
“family” are synonymous, as are “is an element of,” “is a member of,” “is
contained in,” and “belongs to.” The different terms are used for convenience;
for example, “a collection of sets” is less confusing than “a set of sets.” A
set x is said to be a “subset” of y if every element of x is also an element of
y; we also say z is “included in” y.

The axioms are very general and apply to almost any conceivable math-
ematical object, and this level of abstraction can be overwhelming at first.
To gain an intuitive feel, it can be helpful to draw a picture illustrating the
concept; for example, a circle containing dots could represent a collection
of sets, and a smaller circle drawn inside the circle could represent a subset.
Overlapping circles can illustrate intersection and union. Circles that illus-
trate the concepts of set theory are frequently used in elementary textbooks
and are called Venn diagrams.

1. Axiom of Extensionality: Two sets are identical if they contain the
same elements.

2. Axiom of Pairing: The set {x,y} exists.

3. Axiom of Power Sets: The power set of a set (the collection of all of its
subsets) exists. For example, the power set of {z,y} is {&, {z}, {y}, {z,y}}
and it exists.

4. Axiom of the Null Set: The empty set @ exists.

5. Axiom of Union: The union of a set (the set containing the elements
of its members) exists. For example, the union of {{z,y},{z}} is {=,v, 2}
and it exists.

6. Axiom of Regularity: Roughly, no set can contain itself, nor can there
be membership “loops,” such as a set being an element of one of its members.

3.2. THE AXIOMS FOR ALL OF MATHEMATICS 69

7. Axiom of Infinity: An infinite set exists. An example of an infinite set
is the set of all integers.

8. Axiom of Separation: The set exists that is obtained by restricting x
with some property. For example, if the set of all integers exists, then the
set of all even integers exists.

9. Axiom of Replacement: The range of a function whose domain is
restricted to the elements of a set x, is also a set. For example, there is a
function from integers (the function’s domain) to their squares (its range).
If we restrict the domain to even integers, its range will become the set of
squares of even integers, so this axiom asserts that the set of squares of even
numbers exists. Technical note: In general, the “function” need not be a set
but can be a proper class.

10. Axiom of Choice: Let x be a set whose members are pairwise disjoint
(i.e, whose members contain no elements in common). Then there exists
another set containing one element from each member of z. For example, if
x is {{y, 2z}, {w,v}}, where y, z, w, and v are different sets, then a set such
as {z,w} exists (but the axiom doesn’t tell us which one). (Actually the
Axiom of Choice is redundant if the set z, as in this example, has a finite
number of elements.)

The Axiom of Choice is usually considered an extension of ZF set theory
rather than a proper part of it. It is sometimes considered philosophically
controversial because it specifies the existence of a set without specifying
what the set is. Constructive logics, including intuitionistic logic, do not
accept the axiom of choice. Since there is some lingering controversy, we often
prefer proofs that do not use the axiom of choice (where there is a known
alternative), and in some cases we will use weaker axioms than the full axiom
of choice. That said, the axiom of choice is a powerful and widely-accepted
tool, so we do use it when needed. ZF set theory that includes the Axiom of
Choice is called Zermelo-Fraenkel set theory with choice (ZFC).

When expressed symbolically, the Axiom of Separation and the Axiom
of Replacement contain wif symbols and therefore each represent infinitely
many axioms, one for each possible wif. For this reason, they are often called
axiom schemes.

It turns out that the Axiom of the Null Set, the Axiom of Pairing, and the
Axiom of Separation can be derived from the other axioms and are therefore
unnecessary, although they tend to be included in standard texts for various
reasons (historical, philosophical, and possibly because some authors may not
know this). In the Metamath set theory database, these redundant axioms
are derived from the other ones instead of truly being considered axioms.
This is in keeping with our general goal of minimizing the number of axioms
we must depend on.

70 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

3.2.4 Other Axioms

Above we qualified the phrase ”all of mathematics” with ”essentially.” The
main important missing piece is the ability to do category theory, which
requires huge sets (inaccessible cardinals) larger than those postulated by
the ZFC axioms. The Tarski—Grothendieck Axiom postulates the existence
of such sets. Note that this is the same axiom used by Mizar for supporting
category theory. The Tarski-Grothendieck axiom can be viewed as a very
strong replacement of the Axiom of Infinity, the Axiom of Choice, and the
Axiom of Power Sets. The set.mm database includes this axiom; see the
database for details about it. Again, we only use this axiom when we need
to. You are only likely to encounter or use this axiom if you are doing
category theory, since its use is highly specialized, so we will not list the
Tarsky-Grothendieck axiom in the short list of axioms below.

Can there be even more axioms? Of course. Godel showed that no finite
set of axioms or axiom schemes can completely describe any consistent theory
strong enough to include arithmetic. But practically speaking, the ones above
are the accepted foundation that almost all mathematicians explicitly or
implicitly base their work on.

3.3 The Axioms in the Metamath Language

Here we list the axioms as they appear in set.mm so you can look them up
there easily. Incidentally, the show statement /tex command was used to
typeset them.

3.3.1 Propositional Calculus

Axiom of Simplification.
ax-1 $a F(p—=(v—p))
Axiom of Distribution.
ax-2 $a F((¢—=(v—=x)) = ((¢=9) = (¢—=x)))
Axiom of Contraposition.
ax-3 $a F((~p—=-¢)=(v—9))
Rule of Modus Ponens.
min $e ko
maj $e FH(p—0)
ax-mp $a F

3.3. THE AXIOMS IN THE METAMATH LANGUAGE 71

3.3.2 Axioms of Predicate Calculus with Equality—Tarski’s
S2

Rule of Generalization.
ax-g.1 $e Fop
ax-gen $a FVxop
Axiom of Quantified Implication.
ax-4 $a H (Ve (Vazp—¢)= (Vep—=Vay))
Axiom of Distinctness.
ax-5 $a F(p—=Vazy)where $d x ¢ (x does not occur in)
Axiom of Existence.
ax-6 $a H(Va(z=y—=Vzp)—p)
Axiom of Equality.
ax-7 $a FH(z=y—(z=2—y=2))
Axiom of Left Equality for Binary Predicate.
ax-8 $a FH(z=y—(z€z—>yecz))
Axiom of Right Equality for Binary Predicate.
ax-9 $a F(z=y—(z€x—>2€y))

3.3.3 Axioms of Predicate Calculus with Equality—Auxiliary

Axiom of Quantified Negation.
ax-10 $a FH(~Vz-Vaep—p)
Axiom of Quantifier Commutation.
ax-11 $a H(VaVyp—=VyVzep)
Axiom of Substitution.
ax-12 $a (Ve z=y—(z=y—(p=Va(z=y—¢))))
Axiom of Quantified Equality.
ax-13 $a F(-Vzz=zx—(-Vzz=y—(z=y—>Vzr=y)))

3.3.4 Set Theory

In order to make the axioms of set theory a little more compact, there are
several definitions from logic that we make use of implicitly, namely, “logical
AND,” “logical equivalence,” and “there exists.”

(p A) stands for —(p —)

(p > 9) stands for ((¢p = ¥) A (Y =)
Jr¢ stands for —Vz—-p

In addition, the axioms of set theory require that all variables be distinctﬂ
thus we also assume:

4Set theory axioms can be devised so that mo variables are required to be distinct,
provided we replace ax-c16 with an axiom stating that “at least two things exist,” thus
making ax-5 the only other axiom requiring the $d statement. These axioms are uncon-
ventional and are not presented here, but they can be found on the http://metamath.org
web site. See also the Comment on p. [125

http://metamath.org

72 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

$d zyzw

Axiom of Extensionality.
ax-ext $a FH(Vz(z€ycrzez)—sy=2)
Axiom of Replacement.
ax-rep $a F(VwIyVz(Vyp—z=y)—=>IyVz(zey+<IJw(wexA
Yye)))
Axiom of Union.
ax-un $a FIzVy(Jz(yexAzecz)—syca)
Axiom of Power Sets.
ax-pow $a FIzVy(Ve(zcy—ax€z)—ycn)
Axiom of Regularity.
ax-reg $a F(Jrzzrzcy—Jz(veyAVz(ze€x——z€y)))
Axiom of Infinity.
ax-inf $a FIz(yexAVy(ycr—Iz(ycznzex)))
Axiom of Choice.
ax-ac $a FIaxVyVz((yezAzew)—=TwVy(Fw((yezAzew)A(
YEWAWER)) y=w))

3.3.5 That’s It

There you have it, the axioms for (essentially) all of mathematics! Wonder
at them and stare at them in awe. Put a copy in your wallet, and you will
carry in your pocket the encoding for all theorems ever proved and that ever
will be proved, from the most mundane to the most profound.

3.4 A Hierarchy of Definitions

The axioms in the previous section in principle embody everything that
can be done within standard mathematics. However, it is impractical to
accomplish very much by using them directly, for even simple concepts (from
a human perspective) can involve extremely long, incomprehensible formulas.
Mathematics is made practical by introducing definitions. Definitions usually
introduce new symbols, or at least new relationships among existing symbols,
to abbreviate more complex formulas. An important requirement for a
definition is that there exist a straightforward (algorithmic) method for
eliminating the abbreviation by expanding it into the more primitive symbol
string that it represents. Some important definitions included in the file
set.mm are listed in this section for reference, and also to give you a feel for
why something like w (the set of natural numbers 0, 1, 2,...) becomes very
complicated when completely expanded into primitive symbols.

What is the motivation for definitions, aside from allowing complicated
expressions to be expressed more simply? In the case of w, one goal is
to provide a basis for the theory of natural numbers. Before set theory
was invented, a set of axioms for arithmetic, called Peano’s postulates, was

3.4. A HIERARCHY OF DEFINITIONS 73

devised and shown to have the properties one expects for natural numbers.
Now anyone can postulate a set of axioms, but if the axioms are inconsistent
contradictions can be derived from them. Once a contradiction is derived,
anything can be trivially proved, including all the facts of arithmetic and
their negations. To ensure that an axiom system is at least as reliable as
the axioms for set theory, we can define sets and operations on those sets
that satisfy the new axioms. In the set.mm Metamath database, we prove
that the elements of w satisfy Peano’s postulates, and it’s a long and hard
journey to get there directly from the axioms of set theory. But the result is
confidence in the foundations of arithmetic. And there is another advantage:
we now have all the tools of set theory at our disposal for manipulating
objects that obey the axioms for arithmetic.

What are the criteria we use for definitions? First, and of utmost im-
portance, the definition should not be creative, that is it should not allow
an expression that previously qualified as a wif but was not provable, to
become provable. Second, the definition should be eliminable, that is, there
should exist an algorithmic method for converting any expression using the
definition into a logically equivalent expression that previously qualified as a
wit.

In almost all cases below, definitions connect two expressions with either
< or =. Eliminatingﬂ such a definition is a simple matter of substituting the
expression on the left-hand side (definiendum or thing being defined) with
the equivalent, more primitive expression on the right-hand side (definiens
or definition).

Often a definition has variables on the right-hand side which do not
appear on the left-hand side; these are called dummy variables. In this
case, any allowable substitution (such as a new, distinct variable) can be
used when the definition is eliminated. Dummy variables may be used
only if they are effectively bound, meaning that the definition will remain
logically equivalent upon any substitution of a dummy variable with any
other qualifying expression, i.e. any symbol string (such as another variable)
that meets the restrictions on the dummy variable imposed by $d and $f
statements. For example, we could define a constant L (inverted tee, meaning
logical “false”) as (¢ A —yp), i.e. “phi and not phi.” Here ¢ is effectively
bound because the definition remains logically equivalent when we replace ¢
with any other wif. (It is actually df-fal in set.mm, which defines L.)

There are two cases where eliminating definitions is a little more complex.
These cases are the definitions df-bi and df-cleq. The first stretches the
concept of a definition a little, as in effect it “defines a definition;” however,
it meets our requirements for a definition in that it is eliminable and does
not strengthen the language. Theorem bii shows the substitution needed to

5Here we mean the elimination that a human might do in his or her head. To eliminate
them as part of a Metamath proof we would invoke one of a number of theorems that deal
with transitivity of equivalence or equality; there are many such examples in the proofs in
set.mm.

74 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

eliminate the <+ symbol.

Definition df-cleq extends the usage of the equality symbol to include
“classes” in set theory. The reason it is potentially problematic is that it can
lead to statements which do not follow from logic alone but presuppose the
Axiom of Extensionality, so we include this axiom as a hypothesis for the
definition. We could have made df-cleq directly eliminable by introducing a
new equality symbol, but have chosen not to do so in keeping with standard
textbook practice. Definitions such as df-cleq that extend the meaning of
existing symbols must be introduced carefully so that they do not lead to
contradictions. Definition df-clel also extends the meaning of an existing
symbol (€); while it doesn’t strengthen the language like df-cleq, this is
not obvious and it must also be subject to the same scrutiny.

Exercise: Study how the wif z € w, meaning “z is a natural number,’
could be expanded in terms of primitive symbols, starting with the definitions
df-clel on p.[78 and df-om on p.[82] and working your way back. Don’t
bother to work out the details; just make sure that you understand how you
could do it in principle. The answer is shown in the footnote on p. If
you actually do work it out, you won’t get exactly the same answer because
we used a few simplifications such as discarding occurrences of —— (double
negation).

In the definitions below, we have placed the AsCll Metamath source below
each of the formulas to help you become familiar with the notation in the
database. For simplicity, the necessary $f and $d statements are not shown.
If you are in doubt, use the show statement command in the Metamath
program to see the full statement. A selection of this notation is summarized
in Appendix [A]

To understand the motivation for these definitions, you should consult the
references indicated: Takeuti and Zaring [67], Quine [55], Bell and Machover
[5], and Enderton [I8]. Our list of definitions is provided more for reference
than as a learning aid. However, by looking at a few of them you can gain a
feel for how the hierarchy is built up. The definitions are a representative
sample of the many definitions in set.mm, but they are complete with respect
to the theorem examples we will present in Section Also, some are
slightly different from, but logically equivalent to, the ones in set.mm (some
of which have been revised over time to shorten them, for example).

)

3.4.1 Definitions for Propositional Calculus

The symbols ¢, ¥, and x represent wifs.
Our first definition introduces the biconditional connectiveﬁ (also called

6The term “connective” is informally used to mean a symbol that is placed between two
variables or adjacent to a variable, whereas a mathematical “constant” usually indicates
a symbol such as the number 0 that may replace a variable or metavariable. From
Metamath’s point of view, there is no distinction between a connective and a constant;
both are constants in the Metamath language.

3.4. A HIERARCHY OF DEFINITIONS (0]

logical equivalence). Unlike most traditional developments, we have chosen
not to have a separate symbol such as “Df.” to mean “is defined as.” Instead,
we will use the biconditional connective for this purpose, as it lets us use
logic to manipulate definitions directly. Here we state the properties of
the biconditional connective with a carefully crafted $a statement, which
effectively uses the biconditional connective to define itself. The > symbol
can be eliminated from a formula using theorem bii, which is derived later.

Define the biconditional connective.

df-bi $a F-(((¢ev) =~ ((p=¢)=-(v=9))) = (~((¢—
P)= (=)= (pe9)))

df-bi $a |- -. (((ph <->ps) ->-. ((ph > ps) —> -.
(ps >ph))) >-. (-. C(ph>ps) —>-.(
ps—>ph))—>(ph<—>ps)))$-

This theorem relates the biconditional connective to primitive connectives
and can be used to eliminate the <> symbol from any wif.

bii $p F((pe) ((v=v)=2-(¥v—=¢)))
bii $p |- ((ph <> ps) <> -. ((ph ->ps) -> -. (ps
>oph))) $= ... 8.

Define disjunction (OR).

df-or $a F((pVy)< (np—v))

df-or $a |- ((ph \/ ps) <> (-. ph => ps)) $.
Define conjunction (AND).

df-an $a F((pAY) o~ (p—=-v))

df-an $a |- ((ph /\ ps) <> -. (ph > -. ps)) $.
Define disjunction (OR) of 3 wifs.

df-3or $a F((eVy V)< ((eVY)Vx))

df-3or $a |- ((ph \/ ps \/ ch) <> ((ph \/ ps) \/ ch)
) $.

Define conjunction (AND) of 3 wis.
df-3an $a F((pAPAX) < ((pAY)AX))

df-3an $a |- ((ph /\ ps /\ ch) <> (Cph /\ ps) /\ ch)
) $.

76 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

3.4.2 Definitions for Predicate Calculus

The symbols z, y, and z represent individual variables of predicate calculus. In
this section, they are not necessarily distinct unless it is explicitly mentioned.

Define existential quantification. The expression 3z means “there exists an
= where ¢ is true.”

df-ex $a F(JxpVr-yp)

df-ex $a |- (E. x ph <—> -. A. x -. ph) $.

Define proper substitution. In our notation, we use [y/z]p to mean “the wff
that results when y is properly substituted for z in the wff cp.”m For example,
[y/xz]z € x is the same as z € y. One way to remember this notation is to
notice that it looks like division and recall that (y/z) - = is y (when x # 0).
The notation is different from the notation ¢(z|y) that is sometimes used,
because the latter notation is ambiguous for us: for example, we don’t know
whether —p(z|y) is to be interpreted as —(p(z]y)) or (—\<p)(w|y)E| Other
texts often use p(y) to indicate our [y/z]p, but this notation is even more
ambiguous since there is no explicit indication of what is being substituted.
Note that this definition is valid even when z and y are the same variable.
The first conjunct is a “trick” used to achieve this property, making the
definition look somewhat peculiar at first.

df-sb $a F([y/z]ee((z=y—=p)AIz(z=yAp)))

df-sb $a |- ([y / x1ph <> ((x=y->ph) /\NE. x (x
=y /\ph)))$.

Define existential uniqueness (“there exists exactly one”). Note that y is a
variable distinct from = and not occurring in ¢.

df-eu $a F(IlzpeIyVa(peoz=y))

df-eu $a |- (E! x ph <> E. yA. x (ph<>x=y3)) §$.

7 This can also be described as substituting = with y, y properly replaces x, or x is
properly replaced by y.

8Because of the way we initially defined wifs, this is the case with any postfix connective
(one occurring after the symbols being connected) or infix connective (one occurring between
the symbols being connected). Metamath does not have a built-in notion of operator
binding strength that could eliminate the ambiguity. The initial parenthesis effectively
provides a prefix connective to eliminate ambiguity. Some conventions, such as Polish
notation used in the 1930’s and 1940’s by Polish logicians, use only prefix connectives and
thus allow the total elimination of parentheses, at the expense of readability. In Metamath
we could actually redefine all notation to be Polish if we wanted to without having to
change any proofs!

3.4. A HIERARCHY OF DEFINITIONS 7

3.4.3 Definitions for Set Theory

The symbols z, y, z, and w represent individual variables of predicate
calculus, which in set theory are understood to be sets. However, using only
the constructs shown so far would be very inconvenient.

To make set theory more practical, we introduce the notion of a “class.’
A class is either a set variable (such as z) or an expression of the form {z|p}
(called an “abstraction class”). Note that sets (i.e. individual variables)
always exist (this is a theorem of logic, namely Jyy = z for any set x),
whereas classes may or may not exist (i.e. 3y y = A may or may not be true).
If a class does not exist it is called a “proper class.” Definitions df-clab,
df-cleq, and df-clel can be used to convert an expression containing
classes into one containing only set variables and wif metavariables.

The symbols A, B, C, D, F', GG, and R are metavariables that range over
classes. A class metavariable A may be eliminated from a wif by replacing it
with {z|p} where neither x nor ¢ occur in the wiff.

The theory of classes can be shown to be an eliminable and conservative
extension of set theory. The eliminability property shows that for every
formula in the extended language we can build a logically equivalent formula
in the basic language; so that even if the extended language provides more
ease to convey and formulate mathematical ideas for set theory, its expressive
power does not in fact strengthen the basic language’s expressive power.
The conservation property shows that for every proof of a formula of the
basic language in the extended system we can build another proof of the
same formula in the basic system; so that, concerning theorems on sets only,
the deductive powers of the extended system and of the basic system are
identical. Together, these properties mean that the extended language can
be treated as a definitional extension that is sound.

A rigorous justification, which we will not give here, can be found in Levy
[38, pp. 357-366] supplementing his informal introduction to class theory on
pp. 7-17. Two other good treatments of class theory are provided by Quine
[55, pp. 15-21] and also [67), pp. 10-14]. Quine’s exposition (he calls them
virtual classes) is nicely written and very readable.

In the rest of this section, individual variables are always assumed to
be distinct from each other unless otherwise indicated. In addition, dummy
variables on the right-hand side of a definition do not occur in the class and
wif metavariables in the definition.

The definitions we present here are a partial but self-contained collection
selected from several hundred that appear in the current set.mm database.
They are adequate for a basic development of elementary set theory.

)

Define the abstraction class. x and y need not be distinct. Definition 2.1 of
Quine, p. 16. This definition may seem puzzling since it is shorter than the
expression being defined and does not buy us anything in terms of brevity.
The reason we introduce this definition is because it fits in neatly with the

78 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

extension of the € connective provided by df-clel.
df-clab $a F(ze{y|lp}tez/y]e)

df-clab $a |- (xe. {y I ph } <> [x/y]ph)$.

Define the equality connective between classes. See Quine or Chapter 4 of
Takeuti and Zaring for its justification and methods for eliminating it. This
is an example of a somewhat “dangerous” definition, because it extends the
use of the existing equality symbol rather than introducing a new symbol,
allowing us to make statements in the original language that may not be true.
For example, it permits us to deduce y = z > Va(z € y +> © € z) which is not
a theorem of logic but rather presupposes the Axiom of Extensionality, which
we include as a hypothesis so that we can know when this axiom is assumed in
a proof (with the show trace_back command). We could avoid the danger
by introducing another symbol, say =, in place of =; this would also have the
advantage of making elimination of the definition straightforward and would
eliminate the need for Extensionality as a hypothesis. We would then also
have the advantage of being able to identify exactly where Extensionality
truly comes into play. One of our theorems would be x = y <> = = y by
invoking Extensionality. However in keeping with standard practice we retain
the “dangerous” definition.

df-cleq.1 $e H(Va(x€ycrzez)—sy=2)

df-cleq $a H(A=B&Va(zeAzeB))

df-cleq.1 $e |- (A. x (xe. y<>xe.z) >y=2z) 8.

df-cleq $a |- (A =B <>A. x (xe. A<>xe. B)) S.

Define the membership connective between classes. Theorem 6.3 of Quine,
p- 41, which we adopt as a definition. Note that it extends the use of the
existing membership symbol, but unlike df-cleq it does not extend the
set of valid wifs of logic when the class metavariables are replaced with set
variables.

df-clel $a F(AeB«Jz(z=ANzEB))

df-clel $a |- (A e. B<>E. x(x=A/\xe.B)) $.7

Define inequality.
df-ne $a F(A#B«+—-A=B)

df-ne $a |- (A =/=B<->-. A=B) §.

Define restricted universal quantification. Enderton, p. 22.
df-ral $a H(VaeApoVa(zeA—p))

3.4. A HIERARCHY OF DEFINITIONS 79
df-ral $a |- (A. x e. Aph <> A. x (xe. A->ph)) $.

Define restricted existential quantification. Enderton, p. 22.
df-rex $a F(JzcApIax(zeAnyp))

df-rex $a |- (E. x e. Aph <>E. x (xe. A/\ph)) $.

Define the universal class. Definition 5.20, p. 21, of Takeuti and Zaring.
df-v $a FV={z|z=2}

df-v $a |- _V={x | x=x1}8§.

Define the subclass relationship between two classes (called the subset relation
if the classes are sets i.e. are not proper). Definition 5.9 of Takeuti and
Zaring, p. 17.

df-ss $a F(ACB&Va(azeAd—zeB))

df-ss $a |- (AC_B<>A. x(xe. A->xe.B)) §$.

Define the union of two classes. Definition 5.6 of Takeuti and Zaring, p. 16.
df-un $a F(AUB)={z|(z€AVzeB)}

df-un $a2a (A u. B) ={x| (xe. A\/ xe.B) }§.

Define the intersection of two classes. Definition 5.6 of Takeuti and Zaring,
p. 16.

df-in $a F(ANB)={z|(z€AN2zeB)}

df-in $a |- (A i"iB)={x | (xe. A/\xe.B) }$.

Define class difference. Definition 5.12 of Takeuti and Zaring, p. 20. Several
notations are used in the literature; we chose the \ convention instead of a
minus sign to reserve the latter for later use in, e.g., arithmetic.

df-dif $a F(A\B)={z|(z€AA-2z€B)}

df-dif $a (A\NB) ={x | (xe. A/\-. xe. B) } 8.

Define the empty or null set. Compare Definition 5.14 of Takeuti and Zaring,
p- 20.

df-nul $a F@=(V\V)

df-nul $a |- (/) = C _V\ _V) §.

80 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Define power class. Definition 5.10 of Takeuti and Zaring, p. 17, but we also
let it apply to proper classes. (Note that ~P is the symbol for calligraphic P,
the tilde suggesting “curly;” see Appendix)

df-pw $a FPA={z|zCA}
df-pw $a |- "PA={x | xC_ A} S.
Define the singleton of a class. Definition 7.1 of Quine, p. 48. It is well-defined

for proper classes, although it is not very meaningful in this case, where it
evaluates to the empty set.

df-sn $a F{A}={z|z=A}
df-sn $a |- { A }={x | x=4}3%.

Define an unordered pair of classes. Definition 7.1 of Quine, p. 48.
df-pr $a F{A,B}=({A}U{B})
df-pr $a |- { A , B} =(C{A}u {B})S$.

Define an unordered triple of classes. Definition of Enderton, p. 19.
df-tp $a H{A,B,C}=({A,B}u{C})

df-tp $a |- {A,B,C}=C{A,B}u {C})S.

Kuratowski’s ordered pair definition. Definition 9.1 of Quine, p. 58. For
proper classes it is not meaningful but is well-defined for convenience. (Note
that <. stands for (whereas < stands for <, and similarly for >. .)

df-op $a F<A7B>:{{A}7{"473}}
df-op $a |- <. A, B> ={{A},{A,B}} 8.

Define the union of a class. Definition 5.5, p. 16, of Takeuti and Zaring.
df-uni $a FUA={z|Jy(zcynycd)}

df-uni $a |- U. A={x | E.y (xe.y/\Nye. A)}$.

Define the intersection of a class. Definition 7.35, p. 44, of Takeuti and
Zaring.
df-int $a FNA={z|Vy(yed—zcy)}

df-int $a |- |7l A={x | A. y (ye. A->xe.y) }8$.

Define a transitive class. This should not be confused with a transitive
relation, which is a different concept. Definition from p. 71 of Enderton,
extended to classes.

df-tr $a F(TrA«(JACA)

3.4. A HIERARCHY OF DEFINITIONS 81
df-tr $a |- (Tr A <> U. AC_A) $.

Define a notation for a general binary relation. Definition 6.18, p. 29, of
Takeuti and Zaring, generalized to arbitrary classes. This definition is well-
defined, although not very meaningful, when classes A and/or B are proper.
The lack of parentheses (or any other connective) creates no ambiguity since
we are defining an atomic wil.

df-br $a H(A R B« (A,B)ER)

df-br $a |- (ARB<><. A, B> e. R) $.

Define an abstraction class of ordered pairs. A special case of Definition 4.16,
p- 14, of Takeuti and Zaring. Note that z must be distinct from x and y, and
z must not occur in ¢, but = and y may be identical and may appear in ¢.

df-opab $a F{(z,y)lp}={z|Fz3y(2=(2,y)ANp)}

df-opab $a |- { <. x , y> I ph}={z | E. xE. y (z-=<.
x,y> /ph)}$.

Define the epsilon relation. Similar to Definition 6.22, p. 30, of Takeuti and
Zaring.
df-eprel $a FE={(z,y)|z€y}

df-eprel $a |- E={ <. x,y> | xe.y}$.

Define a founded relation. R is a founded relation on A iff (if and only
if) each nonempty subset of A has an “R-minimal element.” Similar to
Definition 6.21, p. 30, of Takeuti and Zaring.
df-fr $a F(RFr A«Ve((2CAA-z=2)—>Ty(yexA(an{z]|z
Ry})=2)))

df-fr $a |- (RFrA<>A. x ((xC.A/N-.x=()) >
E.y(ye.x/\N(xii{zlzRy})=()))
) $.

Define a well-ordering. R is a well-ordering of A iff it is founded on A and
the elements of A are pairwise R-comparable. Similar to Definition 6.24(2),
p- 30, of Takeuti and Zaring.
df-we $a F(R We A< (RFr ANVaVy((z€ANycA)—(x RyV
r=yVy Rz))))

df-we $a (R We A <> (RFrA/\A. xA. y ((xe. A/\y
e.A) > (xRy\V x=y\/yRx))))S$.

82 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Define the ordinal predicate, which is true for a class that is transitive and
is well-ordered by the epsilon relation. Similar to definition on p. 468, Bell
and Machover.

df-ord $a F(Ord A< (Tr ANE We A))

df-ord $a |- (Ord A <-> (Tr A /N E We 4)) $.

Define the class of all ordinal numbers. An ordinal number is a set that
satisfies the ordinal predicate. Definition 7.11 of Takeuti and Zaring, p. 38.

df-on $a F On={2z|0rd z}

df-on $a |- On = { x | Ord x } $.

Define the limit ordinal predicate, which is true for a non-empty ordinal
that is not a successor (i.e. that is the union of itself). Compare Bell and
Machover, p. 471 and Exercise (1), p. 42 of Takeuti and Zaring.

df-lim $a F(Lim A< (Ord AN-A=2ANA=JA))

df-1im $a |- (Lim A <-> (0rd A /\ -. A= (/) /\ A=TU. 4)
) $.

Define the successor of a class. Definition 7.22 of Takeuti and Zaring, p. 41.
Our definition is a generalization to classes, although it is meaningless when
classes are proper.

df-suc $a Fsuc A=(AU{A})

df-suc $a |- suc A= (Au. {A})S.

Define the class of natural numbers. Compare Bell and Machover, p. 471.
df-om $a Fw={z|(Ord 2z AVy(Limy—xz€y))}

df-om $a |- om={ x| (Ordx /N A. y (Limy ->xe. y))
}s.

Define the Cartesian product (also called the cross product) of two classes.
Definition 9.11 of Quine, p. 64.

df-xp $a F(AxB)={{(z,y)|(z€AAyeB)}

df-xp $a |- (AX. B)={<.x,y> | (xe. A/\ye.B)
} 8.

Define a relation. Definition 6.4(1) of Takeuti and Zaring, p. 23.
df-rel $a F(Rel A+ AC(VxV))

3.4. A HIERARCHY OF DEFINITIONS 83

df-rel $a |- (Rel A <> AC_. (_VX. _.V)) $.

Define the domain of a class. Definition 6.5(1) of Takeuti and Zaring, p. 24.
df-dm $a FdomA={z|Jy(x,y)cA}

df-dm $a |- dom A ={x | E. y<. x,y> e. A} $.
Define the range of a class. Definition 6.5(2) of Takeuti and Zaring, p. 24.
df-rn $a FranA={y|Jz(z,y)eA}

df-rn $a |- ran A ={y | E. x <. x , y > e. A} S.

Define the restriction of a class. Definition 6.6(1) of Takeuti and Zaring,
p- 24.

df-res $a F(A[B)=(AN(BxV))

df-res $a |- (A |“B)=(CAi"i (BX. _.V)) §.

Define the image of a class. Definition 6.6(2) of Takeuti and Zaring, p. 24.
df-ima $a F(A“B)=ran (A|B)

df-ima $a |- (A" B) =ran (A | B) §.

Define the composition of two classes. Definition 6.6(3) of Takeuti and Zaring,
p. 24.

df-co $a F(AoB)={(z,y)|3z({x,z)eBA(z,y)€A)}

df-co $a |- (A o. B)={<.x,y> | E.z (<. x, 2>
e. B/\N<.z,y> e. A)} 8.

Define a function. Definition 6.4(4) of Takeuti and Zaring, p. 24.
df-fun $a F(Fun A< (Rel AANVzI2zVy((z,y)eA—y=2)))

df-fun $a |- (Fun A <> (Rel A/ A. xE. zA. y (<. x, 5
>. e. A>y=2)))8$.

Define a function with domain. Definition 6.15(1) of Takeuti and Zaring,
p- 27.

df-fn $a F(A Fn B+ (Fun AAdom A=B))

df-fn $a |- (AFn B <-> (Fun A /\ dom A =B)) $.

Define a function with domain and co-domain. Definition 6.15(3) of Takeuti
and Zaring, p. 27.

df-f $a H(F:A— B+ (FFn AAran FCB))

84 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED
df-f $a |- (F : A--—>B <> (FFnA /\Nran FC_B)) $.

Define a one-to-one function. Compare Definition 6.15(5) of Takeuti and
Zaring, p. 27.

df-f1 $a F(F:A Rt B« (F:A— BAVy3zVz((z,y)eF—x=
z)))

df-f1 $a |- (F : A -1-1->B <> (F : A-->B /\ A. yE. z
A.x (<. x,y> e. F>x=2z))) §.

Define an onto function. Definition 6.15(4) of Takeuti and Zaring, p. 27.
df-fo $a F(F:A — B« (F Fn AAran F=B))

onto

df-fo $a |- (F : A -onto-> B <> (FFn A/ ran F=B)) $.

Define a one-to-one, onto function. Compare Definition 6.15(6) of Takeuti
and Zaring, p. 27.

df-t1o $a b (F:A = B (F:A S BAF:. A — B))
df-flo $a |- (F : A -1-1-onto-> B <-> (F : A -1-1-> B?
/\F : A -onto->B)) $.7

Define the value of a function. This definition applies to any class and
evaluates to the empty set when it is not meaningful. Note that F*A means
the same thing as the more familiar F'(A) notation for a function’s value at
A. The F*‘A notation is common in formal set theory.

di-fv $a H(F A)=U{z[(F“{A})={z}}

df-fv $a |- (F “A) =U. {x | (CF"{A})={x}1]8.

Define the result of an operation. Here, F' is an operation on two values
(such as + for real numbers). This is defined for proper classes A and B
even though not meaningful in that case. However, the definition can be
meaningful when F' is a proper class.

df-opr $a FH(AF B)=(F‘(A,B))

df-opr $a |- CAFB) =(F “<. A, B>) §.

3.5. TRICKS OF THE TRADE 85

3.5 Tricks of the Trade

In the set.mm database our goal was usually to conform to modern notation.
However in some cases the relationship to standard textbook language
may be obscured by several unconventional devices we used to simplify the
development and to take advantage of the Metamath language. In this
section we will describe some common conventions used in set.mm.

e The turnstile symbol, I, meaning “it is provable that,” is the first token
of all assertions and hypotheses that aren’t syntax constructions. This
is a standard convention in logic. (We mentioned this earlier, but this
symbol is bothersome to some people without a logic background. It
has no deeper meaning but just provides us with a way to distinguish
syntax constructions from ordinary mathematical statements.)

e A hypothesis of the form
$e F(p—=Vazp)
should be read “assume variable z is (effectively) not free in wif ¢.”
Literally, this says “assume it is provable that ¢ — Vx ¢.” This device
lets us avoid the complexities associated with the standard treatment
of free and bound variables. The footnote on p. discusses this
further.
e A statement of one of the forms
$a H(~Vza=y—...)
$p F(~Vza=y—...)

should be read “if x and y are distinct variables, then...” This an-
tecedent provides us with a technical device to avoid the need for the
$d statement early in our development of predicate calculus, permit-
ting symbol manipulations to be as conceptually simple as those in
propositional calculus. However, the $d statement eventually becomes
a requirement, and after that this device is rarely used.

e The statement
$d z y

should be read “assume x and y are distinct variables.”

e The statement
$d z

should be read “assume z does not occur in ¢.”

e The statement

86 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

$d z A
should be read “assume variable x does not occur in class A.”

e The restriction and hypothesis group

$d z A
$d xz ¥
$e F(z=A—(pev))

is frequently used in place of explicit substitution, meaning “assume
results from the proper substitution of A for z in ¢.” Sometimes “$e
F (¢ — Va 1) is used instead of “$d x1,” which requires only that
be effectively not free in ¢ but not necessarily absent from it. The use
of implicit substitution is partly a matter of personal style, although
it may make proofs somewhat shorter than would be the case with
explicit substitution.

e The hypothesis
$e FAeV

should be read “assume class A is a set (i.e. exists).” This is a convenient
convention used by Quine.

e The restriction and hypothesis

$d z y
$e F(yeA—=VaoyecA)

should be read “assume variable x is (effectively) not free in class A.”

3.6 A Theorem Sampler

In this section we list some of the more important theorems that are proved in
the set.mm database, and they illustrate the kinds of things that can be done
with Metamath. While all of these facts are well-known results, Metamath
offers the advantage of easily allowing you to trace their derivation back to
axioms. Our intent here is not to try to explain the details or motivation;
for this we refer you to the textbooks that are mentioned in the descriptions.
(The set.mn file has bibliographic references for the text references.) Their
proofs often embody important concepts you may wish to explore with the
Metamath program (see Section . All the symbols that are used here
are defined in Section[3.:4] For brevity we haven’t included the $d restrictions
or $f hypotheses for these theorems; when you are uncertain consult the
set.mm database.

We start with syl (principle of the syllogism). In Principia Mathematica
Whitehead and Russell call this “the principle of the syllogism... because...

3.6. A THEOREM SAMPLER 87

the syllogism in Barbara is derived from them” [74, quote after Theorem
*2.06 p. 101]. Some authors call this law a “hypothetical syllogism.” As of
2019 syl is the most commonly referenced proven assertion in the set.mm
database]

Theorem syl (principle of the syllogism).
syl.1 $e F(p—19)
syl.2 $e F(Y—x)
syl $p F(v—=x)

The following theorem is not very deep but provides us with a notational
device that is frequently used. It allows us to use the expression “A € V7 as
a compact way of saying that class A exists, i.e. is a set.

Two ways to say “A is a set”: A is a member of the universe V if and only
if A exists (i.e. there exists a set equal to A). Theorem 6.9 of Quine, p. 43.

isset $p F(AeVe Iz a=A)

Next we prove the axioms of standard ZF set theory that were missing
from our axiom system. From our point of view they are theorems since they
can be derived from the other axioms.

Axiom of Separation (Aussonderung) proved from the other axioms of ZF
set theory. Compare Exercise 4 of Takeuti and Zaring, p. 22.

inex1.1 $e FA€V

inex $p F(ANB)eV
Axiom of the Null Set proved from the other axioms of ZF set theory.
Corollary 5.16 of Takeuti and Zaring, p. 20.

Oex $p F@ €V
The Axiom of Pairing proved from the other axioms of ZF set theory. Theorem
7.13 of Quine, p. 51.

prex $p F{A,B}eV

Next we will list some famous or important theorems that are proved
in the set.mm database. None of them except omex require the Axiom of
Infinity, as you can verify with the show trace_back Metamath command.

The resolution of Russell’s paradox. There exists no set containing the set of
all sets which are not members of themselves. Proposition 4.14 of Takeuti
and Zaring, p. 14.

ru $p F-Jzr={y|-yecy}

9 The Metamath program command show usage shows the number of references. On
2019-04-29 (commit 71cbbbdb387e) syl was directly referenced 10,819 times. The second
most commonly referenced proven assertion was eqid, which was directly referenced 7,738
times.

88 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Cantor’s theorem. No set can be mapped onto its power set. Compare
Theorem 6B(b) of Enderton, p. 132.

canth.1 $e FA€V
canth $p F—F:A — P A

onto

The Burali-Forti paradox. No set contains all ordinal numbers. Enderton,
p. 194. (Burali-Forti was one person, not two.)

onprc $p F—-OnevVv

Peano’s postulates for arithmetic. Proposition 7.30 of Takeuti and Zaring,
pp. 42-43. The objects being described are the members of w i.e. the natural
numbers 0, 1, 2,.... The successor operation suc means “plus one.” peanol
says that 0 (which is defined as the empty set) is a natural number. peano?2
says that if A is a natural number, so is A + 1. peano3 says that 0 is not
the successor of any natural number. peano4 says that two natural numbers
are equal if and only if their successors are equal. peano5 is essentially the
same as mathematical induction.

peanol $p FOcw
peano2 $p F(A€w—sucAcw)

peano3 $p Acw—-sucA=9)

=(
peanod $p F((A€wABcw)—(sucA=sucB+ A=DB))
= (

peano5 $p (geANVrew(zeA—suczeA))—»wCA)

Finite Induction (mathematical induction). The first hypothesis is the basis
and the second is the induction hypothesis. Theorem Schema 22 of Suppes,
p- 136.

findes.1 $e H[D/z]¢

findes.2 $e FH(zew—(p—[sucz/z]p))

findes $p F(z€Ew—)

Transfinite Induction with explicit substitution. The first hypothesis is the
basis, the second is the induction hypothesis for successors, and the third is
the induction hypothesis for limit ordinals. Theorem Schema 4 of Suppes, p.
197.

tfindes.1 $e H [T /z]p

tfindes.2 $e F(x€On—(p—[sucz/z]p))

tfindes.3 $e F(Limy— (Vaxeypo—|y/z]p))

tfindes $p F(z€On—yp)

Principle of Transfinite Recursion. Theorem 7.41 of Takeuti and Zaring,
p- 47. Transfinite recursion is the key theorem that allows arithmetic of
ordinals to be rigorously defined, and has many other important uses as
well. Hypotheses tfr.1 and tfr.2 specify a certain (proper) class F'. The
complicated definition of F' is not important in itself; what is important is

3.7. AXIOMS FOR REAL AND COMPLEX NUMBERS 89

that there be such an F with the required properties, and we show this by
displaying F' explicitly. tfrl states that F' is a function whose domain is
the set of ordinal numbers. tfr2 states that any value of F' is completely
determined by its previous values and the values of an auxiliary function, G.
tfr3 states that F' is unique, i.e. it is the only function that satisfies tfr1
and tfr2. Note that f is an individual variable like z and y; it is just a
mnemonic to remind us that A is a collection of functions.

tfr.1 $e FA={f|3z€On(fFnacAVycz(f'y)=(G(fly)))}

tfr.2 $e FF=JA

tfrl $p HFFnOn

tfr2 $p F(z€O0n—(F‘z)=(G*(Flz)))

tfr3 $p H((BFnOnAVzeOn(B‘z)=(G‘(Blz)))—>B=F)

The existence of omega (the class of natural numbers). Axiom 7 of Takeuti
and Zaring, p. 43. (This is the only theorem in this section requiring the
Axiom of Infinity.)

omex $p FweV

3.7 Axioms for Real and Complex Numbers

This section presents the axioms for real and complex numbers, along with
some commentary about them. Analysis textbooks implicitly or explicitly
use these axioms or their equivalents as their starting point. In the database
set.mm, we define real and complex numbers as (rather complicated) specific
sets and derive these axioms as theorems from the axioms of ZF set theory,
using a method called Dedekind cuts. We omit the details of this construction,
which you can follow if you wish using the set.mm database in conjunction
with the textbooks referenced therein.

Once we prove those theorems, we then restate these proven theorems as
axioms. This lets us easily identify which axioms are needed for a particular
complex number proof, without the obfuscation of the set theory used to
derive them. As a result, the construction is actually unimportant other than
to show that sets exist that satisfy the axioms, and thus that the axioms are
consistent if ZF set theory is consistent. When working with real numbers
you can think of them as being the actual sets resulting from the construction
(for definiteness), or you can think of them as otherwise unspecified sets that
happen to satisfy the axioms. The derivation is not easy, but the fact that it
works is quite remarkable and lends support to the idea that ZFC set theory
is all we need to provide a foundation for essentially all of mathematics.

90 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

3.7.1 The Axioms for Real and Complex Numbers Them-
selves

For the axioms we are given (or postulate) 8 classes: C (the set of complex
numbers), R (the set of real numbers, a subset of C), 0 (zero), 1 (one), i
(square root of —1), + (plus), - (times), and <g (less than for just the real
numbers). Subtraction and division are defined terms and are not part of
the axioms; for their definitions see set.mm.

Note that the notation (A + B) (and similarly (A - B)) specifies a class
called an operation, and is the function value of the class + at ordered pair
(A, B). An operation is defined by statement df-opr on p. The notation
A <p B specifies a wif called a binary relation and means (A, B) € <g, as
defined by statement df-br on p.

Our set of 8 given classes is assumed to satisfy the following 22 axioms
(in the axioms listed below, < really means <g).

1. The real numbers are a subset of the complex numbers.
ax-resscn $p FRCC
2. One is a complex number.
ax-lcn $p F1eC
3. The imaginary number ¢ is a complex number.
ax-icn $p FieC
4. Complex numbers are closed under addition.
ax-addcl $p H((A€CABeC)—=(A+B)eC)
5. Real numbers are closed under addition.
ax-addrcl $p F((A€eRABeR)—(A+B)eR)
6. Complex numbers are closed under multiplication.
ax-mulcl $p F((AeCABeC)—(A-B)eC)
7. Real numbers are closed under multiplication.
ax-mulrcl $p H((A€RABeR)—=(A-B)eR)
8. Multiplication of complex numbers is commutative.
ax-mulcom $p H((A€CABeC)—(A-B)=(B-A))
9. Addition of complex numbers is associative.
ax-addass $p H((A€CABeCACEeC)—=((A+B)+C)=(A+(
B+C)))
10. Multiplication of complex numbers is associative.
ax-mulass $p F((A€CABeCACeC)—((A-B)-C)=(A-(B-
)))
11. Multiplication distributes over addition for complex numbers.
ax-distr $p F((A€CABeCACeC)—=(A-(B+C))=((A-B)
+(A-C)))
12. The square of i equals —1 (expressed as i-squared plus 1 is 0).
ax-i2m1 $p F((i-7)+1)=0
13. One and zero are distinct.
ax-1ne0 $p F1+#0

3.7. AXIOMS FOR REAL AND COMPLEX NUMBERS 91

14. One is an identity element for real multiplication.
ax-1rid $p F(AeR—(A4-1)=A)
15. Every real number has a negative.
ax-rnegex $p F(A€R—-JzecR(A+2)=0)
16. Every nonzero real number has a reciprocal.
ax-rrecex $p F(AER - (A40—=F2xeR(A-z)=1))
17. A complex number can be expressed in terms of two reals.
ax-cnre $p F(AcC—3IzeRIyecRA=(z+(y-i)))
18. Ordering on reals satisfies strict trichotomy.
ax-pre-lttri $p F((A€ERABeR)—(A<B+-~(A=BVB<A))

19. Ordering on reals is transitive.
ax-pre-lttrn $p F((A€RABeRACER)—=((A<BAB<C(C)—
A<(C))
20. Ordering on reals is preserved after addition to both sides.
ax-pre-ltadd $p F((A€ERABERACER)—=(A<B—(C+A)<(
C+B)))
21. The product of two positive reals is positive.
ax-pre-mulgtO $p H((AERABER)—=((0<AANO<B)—0<(A-
B)))
22. A non-empty, bounded-above set of reals has a supremum.
ax-pre-sup $p F((ACRAA#OATzeRVyeAdy<z)—IzeR(V
yeA-r<yAVyeR(y<zx—Iz€Ay<z)))

This completes the set of axioms for real and complex numbers. You may
wish to look at how subtraction, division, and decimal numbers are defined
in set.mm, and for fun look at the proof of 2 + 2 = 4 (theorem 2p2e4 in
set.mm) as discussed in section

In set.mm we define the non-negative integers N, the integers Z, and the
rationals Q as subsets of R. This leads to the nice inclusion NC Z C Q C
R C C, giving us a uniform framework in which, for example, a property
such as commutativity of complex number addition automatically applies
to integers. The natural numbers N are different from the set w we defined
earlier, but both satisfy Peano’s postulates.

3.7.2 Complex Number Axioms in Analysis Texts

Most analysis texts construct complex numbers as ordered pairs of reals,
leading to construction-dependent properties that satisfy these axioms but
are not stated in their pure form. (This is also done in set.mm but our
axioms are extracted from that construction.) Other texts will simply state
that R is a “complete ordered subfield of C,” leading to redundant axioms
when this phrase is completely expanded out. In fact I have not seen a text
with the axioms in the explicit form above. None of these axioms is unique

92 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

individually, but this carefully worked out collection of axioms is the result
of years of work by the Metamath community.

3.7.3 Eliminating Unnecessary Complex Number Ax-
ioms

We once had more axioms for real and complex numbers, but over years of
time we (the Metamath community) have found ways to eliminate them (by
proving them from other axioms) or weaken them (by making weaker claims
without reducing what can be proved). In particular, here are statements
that used to be complex number axioms but have since been formally proven
(with Metamath) to be redundant:

e C € V. At one time this was listed as a “complex number axiom.”

However, this is not properly speaking a complex number axiom, and
in any case its proof uses axioms of set theory. Proven redundant by
Mario Carneiro on 17-Nov-2014 (see axcnex).

o (AcCABeC)— (A+B)=(B+ A)). Proved redundant by Eric
Schmidt on 19-Jun-2012, and formalized by Scott Fenton on 3-Jan-2013
(see addcom).

(AeC— (A+0) = A). Proved redundant by Eric Schmidt on 19-
Jun-2012, and formalized by Scott Fenton on 3-Jan-2013 (see addid1).

(Ae C — 3z € C(A+) =0). Proved redundant by Eric Schmidt
and formalized on 21-May-2007 (see cnegex).

(A€ CNA#0)— Jx € C(A-z) =1). Proved redundant by Eric
Schmidt and formalized on 22-May-2007 (see recex).

e 0 € R. Proved redundant by Eric Schmidt on 19-Feb-2005 and formal-
ized 21-May-2007 (see Ore).

We could eliminate 0 as an axiomatic object by defining it as ((i - ¢) + 1)
and replacing it with this expression throughout the axioms. If this is done,
axiom ax-i2ml becomes redundant. However, the remaining axioms would
become longer and less intuitive.

Eric Schmidt’s paper analyzing this axiom system [61] presented a proof
that these remaining axioms, with the possible exception of ax-mulcom, are
independent of the others. It is currently an open question if ax-mulcom is
independent of the others.

3.8 Two Plus Two Equals Four

Here is a proof that 2+2 = 4, as proven in the theorem 2p2e4 in the database
set.mm. This is a useful demonstration of what a Metamath proof can look

3.8. TWO PLUS TWO EQUALS FOUR 93

like. This proof may have more steps than you’re used to, but each step is
rigorously proven all the way back to the axioms of logic and set theory. This
display was originally generated by the Metamath program as an HTML
file.

In the table showing the proof “Step” is the sequential step number, while
its associated “Expression” is an expression that we have proved. “Ref” is
the name of a theorem or axiom that justifies that expression, and “Hyp”
refers to previous steps (if any) that the theorem or axiom needs so that
we can use it. Expressions are indented further than the expressions that
depend on them to show their interdependencies.

Table 3.1: Two plus two equals four

Step Hyp Ref Expression

1 df-2 F2=1+1

2 1 oveq2i F(24+2)=(24+(1+1))
3 df-4 F4=(3+1)

4 df-3 F3=(2+1)

5 4 oveqli FB+1)=(24+1)+1)
6 2cn F2eC

7 ax-lcn F1eC

8 6,7,7 addassi F(2+1)+1)=2+(1+1))
9 3,5,8 3eqtri F4=(2+(1+1))

10 2,9 eqtrdi F(2+2)=4

Step 1 says that we can assert that 2 = 1+ 1 because it is justified by
df-2. What is df-27 It is simply the definition of 2, which in our system is
defined as being equal to 1 + 1. This shows how we can use definitions in
proofs.

Look at Step 2 of the proof. In the Ref column, we see that it references
a previously proved theorem, oveq2i. It turns out that theorem oveq2i
requires a hypothesis, and in the Hyp column of Step 2 we indicate that
Step 1 will satisfy (match) this hypothesis. If we looked at oveq2i we
would find that it proves that given some hypothesis A = B, we can prove
that (CFA) = (CFB). If we use oveq2i and apply step 1’s result as the
hypothesis, that will mean that A = 2 and B = (1 + 1) within this use
of oveq2i. We are free to select any value of C and F (subject to syntax
constraints), so we are free to select C' = 2 and F' = +, producing our desired
result, (2+2) =2+ (1+1)).

Step 2 is an example of substitution. In the end, every step in every
proof uses only this one substitution rule. All the rules of logic, and all the
axioms, are expressed so that they can be used via this one substitution rule.
So once you master substitution, you can master every Metamath proof, no
exceptions.

Each step is clear and can be immediately checked. In the HTML display

94 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

you can even click on each reference to see why it is justified, making it easy
to see why the proof works.

3.9 Deduction

Strictly speaking, a deduction (also called an inference) is a kind of statement
that needs some hypotheses to be true in order for its conclusion to be
true. A theorem, on the other hand, has no hypotheses. Informally we often
call both of them theorems, but in this section we will stick to the strict
definitions.

It sometimes happens that we have proved a deduction of the form ¢ = v
(given hypothesis ¢ we can prove 1) and we want to then prove a theorem
of the form ¢ — 1.

Converting a deduction (which uses a hypothesis) into a theorem (which
does not) is not as simple as you might think. The deduction says, “if we can
prove ¢ then we can prove ¢,” which is in some sense weaker than saying
“p implies .” There is no axiom of logic that permits us to directly obtain
the theorem given the deduction[T]

This is in contrast to going the other way. If we have the theorem
(¢ — 1), it is easy to recover the deduction (¢ =) using modus ponens
(ax-mp; see section [3.3.1)).

In the following subsections we first discuss the standard deduction theo-
rem (the traditional but awkward way to convert deductions into theorems)
and the weak deduction theorem (a limited version of the standard deduction
theorem that is easier to use and was once widely used in set.mm). In section
we discuss deduction style, the newer approach we now recommend
in most cases. Deduction style uses “deduction form,” a form that prefixes
each hypothesis (other than definitions) and the conclusion with a universal
antecedent (“@ —”). Deduction style is widely used in set.mm, so it is useful
to understand it and why it is widely used. Section briefly discusses
our approach for using natural deduction within set.mm, as that approach
is deeply related to deduction style. We conclude with a summary of the
strengths of our approach, which we believe are compelling.

3.9.1 The Standard Deduction Theorem

It is possible to make use of information contained in the deduction or its
proof to assist us with the proof of the related theorem. In traditional logic
books, there is a metatheorem called the Deduction Theorem, discovered
independently by Herbrand and Tarski around 1930. The Deduction Theorem,

10 The conversion of a deduction to a theorem does not even hold in general for quantum
propositional calculus, which is a weak subset of classical propositional calculus. It has
been shown that adding the Standard Deduction Theorem (discussed below) to quantum
propositional calculus turns it into classical propositional calculus!

3.9. DEDUCTION 95

which we often call the Standard Deduction Theorem, provides an algorithm
for constructing a proof of a theorem from the proof of its corresponding
deduction. See, for example, [39], p. 56]. To construct a proof for a theorem,
the algorithm looks at each step in the proof of the original deduction and
rewrites the step with several steps wherein the hypothesis is eliminated and
becomes an antecedent.

In ordinary mathematics, no one actually carries out the algorithm,
because (in its most basic form) it involves an exponential explosion of
the number of proof steps as more hypotheses are eliminated. Instead, the
Standard Deduction Theorem is invoked simply to claim that it can be done
in principle, without actually doing it. What’s more, the algorithm is not as
simple as it might first appear when applying it rigorously. There is a subtle
restriction on the Standard Deduction Theorem that must be taken into
account involving the axiom of generalization when working with predicate
calculus (see the literature for more detail).

One of the goals of Metamath is to let you plainly see, with as few
underlying concepts as possible, how mathematics can be derived directly
from the axioms, and not indirectly according to some hidden rules buried
inside a program or understood only by logicians. If we added the Standard
Deduction Theorem to the language and proof verifier, that would greatly
complicate both and largely defeat Metamath’s goal of simplicity. In principle,
we could show direct proofs by expanding out the proof steps generated by
the algorithm of the Standard Deduction Theorem, but that is not feasible
in practice because the number of proof steps quickly becomes huge, even
astronomical. Since the algorithm of the Standard Deduction Theorem is
driven by the proof, we would have to go through that proof all over again—
starting from axioms—in order to obtain the theorem form. In terms of proof
length, there would be no savings over just proving the theorem directly
instead of first proving the deduction form.

3.9.2 Weak Deduction Theorem

We have developed a more efficient method for proving a theorem from a
deduction that can be used instead of the Standard Deduction Theorem
in many (but not all) cases. We call this more efficient method the Weak
Deduction TheoremE Unlike the Standard Deduction Theorem, the Weak
Deduction Theorem produces the theorem directly from a special substitution
instance of the deduction, using a small, fixed number of steps roughly
proportional to the length of the final theorem.

If you come to a proof referencing the Weak Deduction Theorem dedth
(or one of its variants dedthxx), here is how to follow the proof without
getting into the details: just click on the theorem referenced in the step just

11 There is also an unrelated “Weak Deduction Theorem” in the field of relevance logic,
so to avoid confusion we could call ours the “Weak Deduction Theorem for Classical
Logic.”

96 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

before the reference to dedth and ignore everything else. Theorem dedth
simply turns a hypothesis into an antecedent (i.e. the hypothesis followed by
— is placed in front of the assertion, and the hypothesis itself is eliminated)
given certain conditions.

The Weak Deduction Theorem eliminates a hypothesis ¢, making it
become an antecedent. It does this by proving an expression ¢ — 1 given
two hypotheses: (1) (A =if(p, A, B) = (p ¢ X)) and (2) x. Note that it
requires that a proof exists for ¢ when the class variable A is replaced with a
specific class B. The hypothesis x should be assigned to the inference. You
can see the details of the proof of the Weak Deduction Theorem in theorem
dedth.

The Weak Deduction Theorem is probably easier to understand by study-
ing proofs that make use of it. For example, let’s look at the proof of renegcl,
which proves that - (A € R - —A € R):

Step Hyp Ref Expression

1 negeq F(A=if(AeR,A,1)—=-A=-if (A
eR,A,1))

2 1 eleqld F(A=if(AecR,A,1)—=>(-AcR -
if(AeR,A,1)eR))

3 1re FleR

4 3 elimel Fif(AeR,A4,1) eR

5 4 renegcli F-if(A€eR,A4,1) eR

6 25 dedth F(A€R—-A€R)

The somewhat strange-looking steps in renegcl before step 5 are technical
stuff that makes this magic work, and they can be ignored for a quick overview
of the proof. To continue following the “important” part of the proof of
renegcl, you can look at the reference to renegcli at step 5.

That said, let’s briefly look at how renegcl uses the Weak Deduction
Theorem (dedth) to do its job, in case you want to do something similar
or want understand it more deeply. Let’s work backwards in the proof of
renegcl. Step 6 applies dedth to produce our goal result - (A € R — —A €
R). This requires on the one hand the (substituted) deduction renegcli
in step 5. By itself renegcli proves the deduction HF A € R =+ —A € R;
this is the deduction form we are trying to turn into theorem form, and
thus renegcli has a separate hypothesis that must be fulfilled. To fulfill the
hypothesis of the invocation of renegcli in step 5, it is eventually reduced
to the already proven theorem 1 € R in step 3. Step 4 connects steps 3
and 5; step 4 invokes elimel, a special case of elimhyp that eliminates a
membership hypothesis for the weak deduction theorem. On the other hand,
the equivalence of the conclusion of renegcl (—A € R) and the substituted
conclusion of renegcli must be proven, which is done in steps 2 and 1.

The weak deduction theorem has limitations. In particular, we must be
able to prove a special case of the deduction’s hypothesis as a stand-alone

3.9. DEDUCTION 97

theorem. For example, we used 1 € R in step 3 of renegcl.

We used to use the weak deduction theorem extensively within set.mm.
However, we now recommend applying “deduction style” instead in most
cases, as deduction style is often an easier and clearer approach. Therefore,
we will now describe deduction style.

3.9.3 Deduction Style

We now prefer to write assertions in “deduction form” instead of writing a
proof that would require use of the standard or weak deduction theorem. We
call this appraoch “deduction style.”

It will be easier to explain this by first defining some terms:

e closed form: A kind of assertion (theorem) with no hypotheses.
Typically its label has no special suffix. An example is unss, which
states: F (ACCABCC(C)« (AUB)CC()

e deduction form: A kind of assertion with one or more hypotheses
where the conclusion is an implication with a wif variable as the
antecedent (usually), and every hypothesis ($e statement) is either
(1) an implication with the same antecedent as the conclusion or (2) a
definition. A definition can be for a class variable (this is a class variable
followed by “=") or a wil variable (this is a wif variable followed by
++); class variable definitions are more common. In practice, a proof
in deduction form will also contain many steps that are implications
where the antecedent is either that wff variable (normally ¢) or is a
conjunction (...A...) including that wif variable (). If an assertion is
in deduction form, and other forms are also available, then we suffix
its label with “d.” An example is unssd, which stateﬁ Fp—AC
C) & Fep—BC(C) = Fe—=(AUB)CC(C)

e inference form: A kind of assertion with one or more hypotheses
that is not in deduction form (e.g., there is no common antecedent).
If an assertion is in inference form, and other forms are also available,
then we suffix its label with “i.” An example is unssi, which states:
FACC & FBCC = F(AUB)CC

When using deduction style we express an assertion in deduction form.
This form prefixes each hypothesis (other than definitions) and the conclusion
with a universal antecedent (“@ —”). The antecedent (e.g., ¢) mimics the
context handled in the deduction theorem, eliminating the need to directly
use the deduction theorem.

12 For brevity we show here (and in other places) a & between hypotheses and a =
between the hypotheses and the conclusion. This notation is technically not part of the
Metamath language, but is instead a convenient abbreviation to show both the hypotheses
and conclusion.

98 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Once you have an assertion in deduction form, you can easily convert it
to inference form or closed form:

e To prove some assertion Ti in inference form, given assertion Td in
deduction form, there is a simple mechanical process you can use. First
take each Ti hypothesis and insert a T. — prefix (“true implies”) using
ali. You can then use the existing assertion Td to prove the resulting
conclusion with a T. — prefix. Finally, you can remove that prefix
using trud, resulting in the conclusion you wanted to prove.

e To prove some assertion T in closed form, given assertion Td in de-
duction form, there is another simple mechanical process you can use.
First, select an expression that is the conjunction (...A...) of all of the
consequents of every hypothesis of Td. Next, prove that this expression
implies each of the separate hypotheses of Td in turn by eliminating
conjuncts (there are a variety of proven assertions to do this, including
simpl, simpr, 3simpa, 3simpb, 3simpc, simpl, simp2, and simp3). If
the expression has nested conjunctions, inner conjuncts can be broken
out by chaining the above theorems with syl (see section E As
your final step, you can then apply the already-proven assertion Td
(which is in deduction form), proving assertion T in closed form.

We can also easily convert any assertion T in closed form to its related
assertion Ti in inference form by applying modus ponens (see section .

The deduction form antecedent can also be used to represent the context
necessary to support natural deduction systems, so we will now discuss
natural deduction.

3.9.4 Natural Deduction

Natural deduction (ND) systems, as such, were originally introduced in 1934
by two logicians working independently: Jaskowski and Gentzen. ND systems
are supposed to reconstruct, in a formally proper way, traditional ways of
mathematical reasoning (such as conditional proof, indirect proof, and proof
by cases). As reconstructions they were naturally influenced by previous
work, and many specific ND systems and notations have been developed
since their original work.

There are many ND variants, but Indrzejczak [27, p. 31-32] suggests that
any natural deductive system must satisfy at least these three criteria:

e “There are some means for entering assumptions into a proof and also
for eliminating them. Usually it requires some bookkeeping devices for

13 There are actually many theorems (labeled simp* such as simp333) that break
out inner conjuncts in one step, but rather than learning them you can just use the
chaining we just described to prove them, and then let the Metamath program command
minimize_with figure out the right ones needed to collapse them.

3.9. DEDUCTION 99

indicating the scope of an assumption, and showing that a part of a
proof depending on eliminated assumption is discharged.

e There are no (or, at least, a very limited set of) axioms, because their
role is taken over by the set of primitive rules for introduction and
elimination of logical constants which means that elementary inferences
instead of formulae are taken as primitive.

e (A genuine) ND system admits a lot of freedom in proof construc-
tion and possibility of applying several proof search strategies, like
conditional proof, proof by cases, proof by reductio ad absurdum etc.’

)

The Metamath Proof Explorer (MPE) as defined in set.mm is funda-
mentally a Hilbert-style system. That is, MPE is based on a larger number
of axioms (compared to natural deduction systems), a very small set of
rules of inference (modus ponens), and the context is not changed by the
rules of inference in the middle of a proof. That said, MPE proofs can be
developed using the natural deduction (ND) approach as originally developed
by Jaskowski and Gentzen.

The most common and recommended approach for applying ND in MPE
is to use deduction form and apply the MPE proven assertions that are
equivalent to ND rules. For example, MPE’s jca is equivalent to ND rule A-I
(and-insertion). We maintain a list of equivalences that you may consult. This
approach for applying an ND approach within MPE relies on Metamath’s
wif metavariables in an essential way, and is described in more detail in the
presentation “Natural Deductions in the Metamath Proof Language” by
Mario Carneiro [I1].

In this style many steps are an implication, whose antecedent mimics the
context (I') of most ND systems. To add an assumption, simply add it to the
implication antecedent (typically using simpr), and use that new antecedent
for all later claims in the same scope. If you wish to use an assertion in
an ND hypothesis scope that is outside the current ND hypothesis scope,
modify the assertion so that the ND hypothesis assumption is added to its
antecedent (typically using adantr). Most proof steps will be proved using
rules that have hypotheses and results of the form ¢ — ...

An example may make this clearer. Let’s show theorem 5.5 of [34] p. 18]
along with a line by line translation using the usual translation of natural
deduction (ND) in the Metamath Proof Explorer (MPE) notation (this is
proof ex-natded5.5). The proof’s original goal was to prove = given two
hypotheses, (¢ — x) and —y. We will translate these statements into MPE
deduction form by prefixing them all with ¢ —. As a result, in MPE the goal
is stated as (¢ — —), and the two hypotheses are stated as (¢ — (¥ — X))
and (¢ — —x).

The following table shows the proof in Fitch natural deduction style and
its MPE equivalent. The # column shows the original numbering, MPE#
shows the number in the equivalent MPE proof (which we will show later),

100 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

ND Ezpression shows the original proof claim in ND notation, and MPE
Translation shows its translation into MPE as discussed in this section. The
final columns show the rationale in ND and MPE respectively.

MPE# ND Ex- MPE ND MPE Ra-
pression Trans- Ration- tionale
lation ale
1 2;3 (W = x) (¢ = (¥ = Given $e; adantr
X)) to put in ND
hypothesis
2 5 X (¢ = —x) Given $e; adantr
to put in ND
hypothesis
3 1) (¢ =) ND hypoth- simpr
esis assump-
tion
4 4 e X ((pAnv) - —EL3 mpd 1,3
X)
5 6 e X ((pANY) —» 1IT2 adantr 5
—x)
6 7) (o — =) A13,4,5 pm2.65da
4,6

The original used Latin letters; we have replaced them with Greek letters
to follow Metamath naming conventions and so that it is easier to follow
the Metamath translation. The Metamath line-for-line translation of this
natural deduction approach precedes every line with an antecedent including
¢ and uses the Metamath equivalents of the natural deduction rules. To
add an assumption, the antecedent is modified to include it (typically by
using adantr; simpr is useful when you want to depend directly on the new
assumption, as is shown here).

In Metamath we can represent the two given statements as these hypothe-
ses:

e ex-natded5.5.1 F (p — (¥ — x))

e ex-natded5.5.2 F (¢ — —x)
Here is the proof in Metamath as a line-by-line translation:

Step Hyp Ref Expression

1 simpr F (A1) =)

2 ex-natded5.5.1 F (¢ — (¢ = x))

3 2 adantr F{(eAY) = (¥ —x))
4 1,3 mpd F(leAY) = x)

3.10. EXPLORING THE SET THEORY DATABASE 101

Step Hyp Ref Expression
5 ex-natded5.5.2 F (¢ — —x)
6 5 adantr F (A1) — —x)
7 4,6 pm2.65da F(p—)

Only using specific natural deduction rules directly can lead to very
long proofs, for exactly the same reason that only using axioms directly in
Hilbert-style proofs can lead to very long proofs. If the goal is short and clear
proofs, then it is better to reuse already-proven assertions in deduction form
than to start from scratch each time and using only basic natural deduction
rules.

3.9.5 Strengths of Our Approach

As far as we know there is nothing else in the literature like either the
weak deduction theorem or Mario Carneiro’s natural deduction method. In
order to transform a hypothesis into an antecedent, the literature’s standard
“Deduction Theorem” requires metalogic outside of the notions provided by
the axiom system. We instead generally prefer to use Mario Carneiro’s
natural deduction method, then use the weak deduction theorem in cases
where that is difficult to apply, and only then use the full standard deduction
theorem as a last resort.

The weak deduction theorem does not require any additional metalogic
but converts an inference directly into a closed form theorem, with a rigorous
proof that uses only the axiom system. Unlike the standard Deduction
Theorem, there is no implicit external justification that we have to trust in
order to use it.

Mario Carneiro’s natural deduction method also does not require any
new metalogical notions. It avoids the Deduction Theorem’s metalogic by
prefixing the hypotheses and conclusion of every would-be inference with a
universal antecedent (“p —”) from the very start.

We think it is impressive and satisfying that we can do so much in a
practical sense without stepping outside of our Hilbert-style axiom system.
Of course our axiomatization, which is in the form of schemes, contains a
metalogic of its own that we exploit. But this metalogic is relatively simple,
and for our Deduction Theorem alternatives, we primarily use just the direct
substitution of expressions for metavariables.

3.10 Exploring the Set Theory Database

At this point you may wish to study the set.mm file in more detail. Pay
particular attention to the assumptions needed to define wffs (which are not
included above), the variable types ($f statements), and the definitions that
are introduced. Start with some simple theorems in propositional calculus,

102 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

making sure you understand in detail each step of a proof. Once you get past
the first few proofs and become familiar with the Metamath language, any
part of the set.mm database will be as easy to follow, step by step, as any
other part—you won’t have to undergo a “quantum leap” in mathematical
sophistication to be able to follow a deep proof in set theory.

Next, you may want to explore how concepts such as natural numbers
are defined and described. This is probably best done in conjunction with
standard set theory textbooks, which can help give you a higher-level un-
derstanding. The set.mm database provides references that will get you
started. From there, you will be on your way towards a very deep, rigorous
understanding of abstract mathematics.

The Metamath program can help you peruse a Metamath database,
whether you are trying to figure out how a certain step follows in a proof
or just have a general curiosity. We will go through some examples of
the commands, using the set.mm database provided with the Metamath
software. These should help get you started. See Chapter [5| for a more
detailed description of the commands. Note that we have included the full
spelling of all commands to prevent ambiguity with future commands. In
practice you may type just the characters needed to specify each command
keyword unambiguously, often just one or two characters per keyword, and
you don’t need to type them in upper case.

First run the Metamath program as described earlier. You should see the
MM> prompt. Read in the set.mm file:

MM> read set.mm

Reading source file "set.mm"... 34554442 bytes

34554442 bytes were read into the source buffer.

The source has 155711 statements; 2254 are $a and 32250 are $p.
No errors were found. However, proofs were not checked.

Type VERIFY PROOF * if you want to check them.

As with most examples in this book, what you will see will be slightly
different because we are continuously improving our databases (including
set.mm).

Let’s check the database integrity. This may take a minute or two to run
if your computer is slow.

MM> verify proof *
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A1l proofs in the database were verified in 2.84 s.

No errors were reported, so every proof is correct.

You need to know the names (labels) of theorems before you can look at
them. Often just examining the database file(s) with a text editor is the best
approach. In set.mm there are many detailed comments, especially near the

3.10. EXPLORING THE SET THEORY DATABASE 103

beginning, that can help guide you. The search command in the Metamath
program is also handy. The comments qualifier will list the statements whose
associated comment (the one immediately before it) contain a string you give
it. For example, if you are studying Enderton’s Elements of Set Theory [1§]
you may want to see the references to it in the database. The search string
enderton is not case sensitive. (This will not show you all the database
theorems that are in Enderton’s book because there is usually only one
citation for a given theorem, which may appear in several textbooks.)

MM> search * "enderton" / comments

12067 unineq $p "... Exercise 20 of [Enderton] p. 32 and ..."

12459 undif2 $p "...Corollary 6K of [Enderton] p. 144. (C..."

12953 df-tp $a "...s. Definition of [Enderton] p. 19. (Co..."

13689 unissb $p ".... Exercise 5 of [Enderton] p. 26 and ..."
(etc.)

Or you may want to see what theorems have something to do with
conjunction (logical AND). The quotes around the search string are optional
when there’s no ambiguity.

MM> search * conjunction / comments

120 ald $p "...be replaced with a conjunction (~ df-an)..."

662 df-bi $a "...viated form after conjunction is introdu..."

1319 wa $a "...ff definition to include conjunction (’and’)."

1321 df-an $a "Define conjunction (logical ’and’). Defini..."

1420 imnan $p "...tion in terms of conjunction. (Contribu..."
(etc.)

Now we will start to look at some details. Let’s look at the first axiom of
propositional calculus (we could use sh st to abbreviate show statement).

MM> show statement ax-1/full

Statement 19 is located on line 881 of the file "set.mm".
"Axiom _Simp_. Axiom Al of [Margaris] p. 49. One of the 3
axioms of propositional calculus. The 3 axioms are also

19 ax-1 $a |- (ph => (ps -> ph)) $.
Its mandatory hypotheses in RPN order are:
wph $f wff ph $.
wps $f wff ps $.
The statement and its hypotheses require the variables: ph
ps
The variables it contains are: ph ps

104 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

Statement 49 is located on line 11182 of the file "set.mm".
Its statement number for HTML pages is 6.

"Axiom _Simp_. Axiom Al of [Margaris] p. 49. One of the 3
axioms of propositional calculus. The 3 axioms are also
given as Definition 2.1 of [Hamilton] p. 28.

49 ax-1 $a |- (ph -> (ps -=>ph)) $.

Its mandatory hypotheses in RPN order are:
wph $f wff ph $.
wps $f wff ps $.

The statement and its hypotheses require the variables:
ph ps

The variables it contains are: ph ps

Compare this to ax-1 on p. You can see that the symbol ph is
the AScII notation for ¢, etc. To see the mathematical symbols for any
expression you may typeset it in ITEX (type help tex for instructions) or,
easier, just use a text editor to look at the comments where symbols are first
introduced in set.mm. The hypotheses wph and wps required by ax-1 mean
that variables ph and ps must be wffs.

Next we’ll pick a simple theorem of propositional calculus, the Principle
of Identity, which is proved directly from the axioms. We’ll look at the
statement then its proof.

MM> show statement id1l/full

Statement 116 is located on line 11371 of the file "set.mm".
Its statement number for HTML pages is 22.

"Principle of identity. Theorem *2.08 of [WhiteheadRusselll
p. 101. This version is proved directly from the axioms for
demonstration purposes.

116 idl $p |- (ph -> ph) $= ... $.
Its mandatory hypotheses in RPN order are:
wph $f wff ph $.
Its optional hypotheses are: wps wch wth wta wet
wze wsi wrh wmu wla wka
The statement and its hypotheses require the variables: ph
These additional variables are allowed in its proof:
ps ch th ta et ze si rh mu la ka
The variables it contains are: ph

The optional variables ps, ch, etc. are available for use in a proof of
this statement if we wish, and were we to do so we would make use of
optional hypotheses wps, wch, etc. (See Section for the meaning of

3.10. EXPLORING THE SET THEORY DATABASE 105

“optional hypothesis.”) The reason these show up in the statement display
is that statement id1 happens to be in their scope (see Section for
the definition of “scope”), but in fact in propositional calculus we will never
make use of optional hypotheses or variables. This becomes important after
quantifiers are introduced, where “dummy” variables are often needed in the
middle of a proof.

Let’s look at the proof of statement id1. We’ll use the show proof com-
mand, which by default suppresses the “non-essential” steps that construct
the wifs. We will display the proof in “lemmon’ format (a non-indented
format with explicit previous step number references) and renumber the
displayed steps:

MM> show proof idl /lemmon/renumber

1 ax-1 $a |- (ph > (ph -> ph))

2 ax-1 $a |- (ph > ((ph -> ph) -> ph))

3 ax-2 $a |- ((ph=> ((ph ->ph) ->ph)) ->

((ph > (Cph ->ph)) ->(ph->ph)

))

4 2,3 ax-mp $a |- ((ph => (ph > ph)) -> (ph -> ph
))

5 1,4 ax-mp $a |- (ph -> ph)

If you have read Section you’ll know how to interpret this proof.
Step 2, for example, is an application of axiom ax-1. This proof is identical
to the one in Hamilton’s Logic for Mathematicians |21, p. 32].

You may want to look at what substitutions are made into ax-1 to arrive
at step 2. The command to do this needs to know the “real” step number,
so we’ll display the proof again without the renumber qualifier.

MM> show proof idl /lemmon

9 ax-1 $a |- (ph -> (ph -> ph))
20 ax-1 $a |- (ph > ((ph => ph) -> ph))
24 ax-2 $a |- (C(ph > ((ph > ph) ->ph)) —>
((ph-> (ph ->ph)) -> (ph->ph)
))
25 20,24 ax-mp $a |- ((ph -> (ph > ph)) -> (ph -> ph
))

26 9,25 ax-mp $a |- (ph -> ph)
The “real” step number is 20. Let’s look at its details.

MM> show proof idl /detailed_step 20

Proof step 20: min=ax-1 $a |- (ph -> ((ph => ph) -> ph)
)

This step assigns source "ax-1" ($a) to target "min" ($e).

The source assertion requires the hypotheses "wph" ($f, step

106 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

18) and "wps" ($f, step 19). The parent assertion of the
target hypothesis is "ax-mp" ($a, step 25).
The source assertion before substitution was:

ax-1 $a |- (ph -> (ps -> ph))
The following substitutions were made to the source
assertion:

Variable Substituted with

ph ph

ps (ph -> ph)
The target hypothesis before substitution was:

min $e |- ph
The following substitution was made to the target hypothesis:

Variable Substituted with

ph (ph-> (C(Cph ->ph) ->ph))

This shows the substitutions made to the variables in ax-1. References
are made to steps 18 and 19 which are not shown in our proof display. To
see these steps, you can display the proof with the all qualifier.

Let’s look at a slightly more advanced proof of propositional calculus.
Note that /\ is the symbol for A (logical AND, also called conjunction).

MM> show statement prth/full

Statement 1791 is located on line 15503 of the file "set.mm".
Its statement number for HTML pages is 559.

"Conjoin antecedents and consequents of two premises. This
is the closed theorem form of ~ animl2d . Theorem *3.47 of
[WhiteheadRussell] p. 113. It was proved by Leibniz,

and it evidently pleased him enough to call it

praeclarum theorema (splendid theorem).

1791 prth $p |- (¢ (ph > ps) /\ (ch ->th)) -> ((ph
/Nch) -> (Cps /\th))) $= ... $.
Its mandatory hypotheses in RPN order are:
wph $f wff ph $.
wps $f wff ps $.
wch $f wff ch $.
wth $f wff th $.
Its optional hypotheses are: wta wet wze wsi wrh wmu wla wka
The statement and its hypotheses require the variables: ph
ps ch th
These additional variables are allowed in its proof: ta et
ze si rh mu la ka
The variables it contains are: ph ps ch th

3.10. EXPLORING THE SET THEORY DATABASE 107

MM> show proof prth /lemmon/renumber

1 simpl $p I- CC(Cph >ps) /\ (ch->th)) >
(ph ->ps))
2 simpr $p I- C C Cph =>ps) /\ Cch->th)) >

(ch->th))
3 1,2 animi2d $p I- CCCph >ps) /\ (ch->th)) ->
(Cph/Nch) > (Cps /\Nth)))

There are references to a lot of unfamiliar statements. To see what they
are, you may type the following:

MM> show proof prth /statement_summary
Summary of statements used in the proof of "prth":

Statement simpl is located on line 14748 of the file
"set.mm".
"Elimination of a conjunct. Theorem *3.26 (Simp) of
[WhiteheadRussell] p. 112. ..."

simpl $p |- (Cph /\ ps) > ph) $= ... $.

Statement simpr is located on line 14777 of the file
"set.mm".
"Elimination of a conjunct. Theorem *3.27 (Simp) of
[WhiteheadRussell] ..."

simpr $p |- ((ph /N ps) > ps) $= ... $.

Statement animl2d is located on line 15445 of the file
"set.mm".
"Conjoin antecedents and consequents in a deduction.

n

anim12d.1 $e |- (ph -> (ps => ch)) $.

anim12d.2 $e |- (ph > (th -> ta)) $.

animi2d $p |- (ph > (Cps /N th) -> (ch /\ ta)))

$= ... 8.

(etc.)

Of course you can look at each of these statements and their proofs, and
so on, back to the axioms of propositional calculus if you wish.

The search command is useful for finding statements when you know
all or part of their contents. The following example finds all statements
containing ph -> ps followed by ch -> th. The $* is a wildcard that
matches anything; the $ before the * prevents conflicts with math symbol
token names. The * after SEARCH is also a wildcard that in this case means
“match any label.”

108 CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

MM> search * "ph -> ps $* ch -> th"

1791 prth $p |- (((ph > ps) /\ (ch > th)) -> ((ph
/N\ch) -> (Cps /\th)))

2455 pm3.48 $p |- (((ph > ps) /\ (ch ->th)) -> ((
ph\/ ch) -> (Cps \/ th)))

117859 pm11.71 $p |- (CE. x ph /N E. ych) => (C A. x (
ph > ps) /NA. y (ch->th)) <>A. xA. y ((ph/\
ch) -> (ps /\th))))

Three statements, prth, pm3.48, and pm11.71, were found to match.

To see what axioms and definitions prth ultimately depends on for its
proof, you can have the program backtrack through the hierarchy of theorems
and definitions.

MM> show trace_back prth /essential/axioms
Statement "prth" assumes the following axioms ($a
statements) :

ax-1 ax-2 ax-3 ax-mp df-bi df-an

Note that the 3 axioms of propositional calculus and the modus ponens
rule are needed (as expected); in addition, there are a couple of definitions
that are used along the way. Note that Metamath makes no distinction
between axioms and definitions. In set.mm they have been distinguished
artificially by prefixing their labels with ax- and df- respectively. For
example, df-an defines conjunction (logical AND), which is represented by
the symbol /\. Section discusses the philosophy of definitions, and the
Metamath language takes a particularly simple, conservative approach by
using the $a statement for both axioms and definitions.

You can also have the program compute how many steps a proof has if
we were to follow it all the way back to $a statements.

MM> show trace_back prth /essential/count_steps

The statement’s actual proof has 3 steps. Backtracking, a
total of 79 different subtheorems are used. The statement
and subtheorems have a total of 274 actual steps. If
subtheorems used only once were eliminated, there would be a
total of 38 subtheorems, and the statement and subtheorems
would have a total of 185 steps. The proof would have 28349
steps if fully expanded back to axiom references. The
maximum path length is 38. A longest path is: prth <-
animl2d <- syl2and <- sylan2d <- ancomsd <- ancom <- pm3.22
<- pm3.21 <- pm3.2 <- ex <- sylbir <- biimpri <- bicomi <-
bicoml <- bi2 <- dfbil <- impbii <- bi3 <- simprim <- impi <-
conli <- nsyl2 <- mt3d <- conld <- notnotl <- con2i <- nsyl3
<- mt2d <- con2d <- notnot2 <- pm2.18d <- pm2.18 <- pm2.21 <-
pm2.21d <- ald <- syl <- mpd <- a2i <- a2i.1

3.10. EXPLORING THE SET THEORY DATABASE 109

This tells us that we would have to inspect 274 steps if we want to verify
the proof completely starting from the axioms. A few more statistics are also
shown. There are one or more paths back to axioms that are the longest;
this command ferrets out one of them and shows it to you. There may be a
sense in which the longest path length is related to how “deep” the theorem
is.

We might also be curious about what proofs depend on the theorem prth.
If it is never used later on, we could eliminate it as redundant if it has no
intrinsic interest by itself.

MM> show usage prth

Statement "prth" is directly referenced in the proofs of 18

statements:
mo3 moOLD 2mo 2mo0LD euind reuind reuss2 reusv3i opelopabt
wemaplem?2 rexanre rlimcn2 olof2 olrlimmul 2sqlem6 spanuni
heicant pm11.71

Thus prth is directly used by 18 proofs. We can use the /recursive
qualifier to include indirect use:

MM> show usage prth /recursive
Statement "prth" directly or indirectly affects the proofs of
24214 statements:

mo3 mo mo30LD eu2 moOLD eu20LD eu30LD mo4f mo4 eud mopick

3.10.1 A Note on the “Compact” Proof Format

The Metamath program will display proofs in a “compact” format whenever
the proof is stored in compressed format in the database. It may be be
slightly confusing unless you know how to interpret it. For example, if you
display the complete proof of theorem id1 it will start off as follows:

MM> show proof idl /lemmon/all

1 wph $f wff ph
2 wph $f wff ph
3 wph $f wif ph
42,3wi ©@4: $a wff (ph -> ph)
51,4 wi ©5: $a wif (ph -> (ph -> ph))
6 04 $a wff (ph -> ph)
ete.

Step 4 has a “local label,” @4, assigned to it. Later on, at step 6, the
label @1 is referenced instead of displaying the explicit proof for that step.
This technique takes advantage of the fact that steps in a proof often repeat,

110

CHAPTER 3. ABSTRACT MATHEMATICS REVEALED

especially during the construction of wffs. The compact format reduces the
number of steps in the proof display and may be preferred by some people.

If you want to see the normal format with the “true” step numbers, you
can use the following workaround:

MM> save proof idl /mormal

The proof of "idl" has been reformatted and saved internally.
Remember to use WRITE SOURCE to save it permanently.

MM> show proof idl /lemmon/all

1 wph
wph
wph
2,3 wi
1,4 wi
wph
wph
6,7 wi

0 ~NO O WwN

$f
$f
$f
$a
$a
$f
$f
$a

wif
wif
wif
wif
wif
wif
wif
wif

ph

ph

ph

(ph -> ph)

(ph -> (ph ->ph))
ph

ph

(ph -> ph)

etc.

Note that the original 6 steps are now 8 steps. However, the format is
now the same as that described in Chapter

Chapter 4

The Metamath Language

Thus mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what we are
saying 1s true.

BERTRAND Russerni[]

Probably the most striking feature of the Metamath language is its almost
complete absence of hard-wired syntax. Metamath does not understand any
mathematics or logic other than that needed to construct finite sequences of
symbols according to a small set of simple, built-in rules. The only rule it
uses in a proof is the substitution of an expression (symbol sequence) for a
variable, subject to a simple constraint to prevent bound-variable clashes.
The primitive notions built into Metamath involve the simple manipulation
of finite objects (symbols) that we as humans can easily visualize and that
computers can easily deal with. They seem to be just about the simplest
notions possible that are required to do standard mathematics.

This chapter serves as a reference manual for the Metamath language.
It covers the tedious technical details of the language, some of which you
may wish to skim in a first reading. On the other hand, you should pay close
attention to the defined terms in boldface; they have precise meanings that
are important to keep in mind for later understanding. It may be best to first
become familiar with the examples in Chapter [2| to gain some motivation for
the language.

If you have some knowledge of set theory, you may wish to study this
chapter in conjunction with the formal set-theoretical description of the
Metamath language in Appendix [C]

We will use the name “Metamath” to mean either the Metamath computer
language or the Metamath software associated with the computer language.
We will not distinguish these two when the context is clear.

159, p. 84].

111

112 CHAPTER 4. THE METAMATH LANGUAGE

The next section contains the complete specification of the Metamath
language. It serves as an authoritative reference and presents the syntax
in enough detail to write a parser and proof verifier. The specification is
terse and it is probably hard to learn the language directly from it, but we
include it here for those impatient people who prefer to see everything up
front before looking at verbose expository material. Later sections explain
this material and provide examples. We will repeat the definitions in those
sections, and you may skip the next section at first reading and proceed to
Section (p-|116).

4.1 Specification of the Metamath Language

Sometimes one has to say difficult things, but one ought to say
them as simply as one knows how.

G. H. HArRDY

4.1.1 Preliminaries

A Metamath database is built up from a top-level source file together with
any source files that are brought in through file inclusion commands (see
below). The only characters that are allowed to appear in a Metamath source
file are the 94 non-whitespace printable Ascil characters, which are digits,
upper and lower case letters, and the following 32 special characters:

I #*

$ % &
; < > c]

’

-~

plus the following characters which are the “white space” characters: space
(a printable character), tab, carriage return, line feed, and form feed. We
will use typewriter font to display the printable characters.

A Metamath database consists of a sequence of three kinds of tokens
separated by white space (which is any sequence of one or more white
space characters). The set of keyword tokens is ${, $}, $c, $v, $£, $e, $d,
$a, $p, $., $=, $(, $), $[, and $]. The last four are called auxiliary or
preprocessing keywords. A label token consists of any combination of letters,
digits, and the characters hyphen, underscore, and period. A math symbol
token may consist of any combination of the 93 printable standard AscCII
characters other than space or $. All tokens are case-sensitive.

2As quoted in [I6], p. 273.

4.1. SPECIFICATION OF THE METAMATH LANGUAGE 113

4.1.2 Preprocessing

The token $(begins a comment and $) ends a comment. Comments may
contain any of the 94 non-whitespace printable characters and white space,
except they may not contain the 2-character sequences $(or $) (comments
do not nest). Comments are ignored (treated like white space) for the purpose
of parsing, e.g., $($[$) is a comment. See p. for comment typesetting
conventions; these conventions may be ignored for the purpose of parsing.

A file inclusion command consists of $[followed by a file name
followed by $1. It is only allowed in the outermost scope (i.e., not between ${
and $}) and must not be inside a statement (e.g., it may not occur between
the label of a $a statement and its $.). The file name may not contain a $
or white space. The file must exist. The case-sensitivity of its name follows
the conventions of the operating system. The contents of the file replace
the inclusion command. Included files may include other files. Only the
first reference to a given file is included; any later references to the same
file (whether in the top-level file or in included files) cause the inclusion
command to be ignored (treated like white space). A verifier may assume
that file names with different strings refer to different files for the purpose of
ignoring later references. A file self-reference is ignored, as is any reference
to the top-level file (to avoid loops). Included files may not include a $(
without a matching $), may not include a $[without a matching $], and
may not include incomplete statements (e.g., a $a without a matching $.). It
is currently unspecified if path references are relative to the process’ current
directory or the file’s containing directory, so databases should avoid using
pathname separators (e.g., “/”) in file names.

Like all tokens, the $(, $), $[, and $] keywords must be surrounded by
white space.

4.1.3 Basic Syntax

After preprocessing, a database will consist of a sequence of statements.
These are the scoping statements ${ and $}, along with the $c, $v, $f, $e,
$d, $a, and $p statements.

A scoping statement consists only of its keyword, ${ or $}. A ${
begins a block and a matching $} ends the block. Every ${ must have a
matching $}. Defining it recursively, we say a block contains a sequence of
zero or more tokens other than ${ and $} and possibly other blocks. There
is an outermost block not bracketed by ${ $}; the end of the outermost
block is the end of the database.

A $v or $c statement consists of the keyword token $v or $c respec-
tively, followed by one or more math symbols, followed by the $. token.
These statements declare the math symbols to be variables or constants
respectively. The same math symbol may not occur twice in a given $v or
$c statement.

114 CHAPTER 4. THE METAMATH LANGUAGE

A math symbol becomes active when declared and stays active until the
end of the block in which it is declared. A variable may not be declared a
second time while it is active, but it may be declared again (as a variable, but
not as a constant) after it becomes inactive. A constant must be declared in
the outermost block and may not be declared a second time.

A 8$f statement consists of a label, followed by $f, followed by its
typecode (an active constant), followed by an active variable, followed by
the $. token. A $e statement consists of a label, followed by $e, followed
by its typecode (an active constant), followed by zero or more active math
symbols, followed by the $. token. A hypothesis is a $f or $e statement.
The type declared by a $f statement for a given label is global even if the
variable is not (e.g., a database may not have wff P in one local scope nd
class P in another).

A simple $d statement consists of $d, followed by two different active
variables, followed by the $. token. A compound $d statement consists
of $d, followed by three or more variables (all different), followed by the
$. token. The order of the variables in a $d statement is unimportant. A
compound $d statement is equivalent to a set of simple $d statements, one
for each possible pair of variables occurring in the compound $d statement.
Henceforth in this specification we shall assume all $d statements are simple.
A $d statement is also called a disjoint (or distinct) variable restriction.

A $a statement consists of a label, followed by $a, followed by its
typecode (an active constant), followed by zero or more active math symbols,
followed by the $. token. A $p statement consists of a label, followed
by $p, followed by its typecode (an active constant), followed by zero or
more active math symbols, followed by $=, followed by a sequence of labels,
followed by the $. token. An assertion is a $a or $p statement.

A $£f, $e, or $d statement is active from the place it occurs until the
end of the block it occurs in. A $a or $p statement is active from the place
it occurs through the end of the database. There may not be two active $f
statements containing the same variable. Each variable in a $e, $a, or $p
statement must exist in an active $f statementﬂ

Each label token must be unique, and no label token may match any
math symbol tokenﬁ

The set of mandatory variables associated with an assertion is the set
of (zero or more) variables in the assertion and in any active $e statements.
The (possibly empty) set of mandatory hypotheses is the set of all active
$f statements containing mandatory variables, together with all active $e
statements. The set of mandatory $d statements associated with an
assertion are those active $d statements whose variables are both among the
assertion’s mandatory variables.

3This requirement can greatly simplify the unification algorithm (substitution calcula-
tion) required by proof verification.

4This restriction was added on June 24, 2006. It is not theoretically necessary but is
imposed to make it easier to write certain parsers.

4.1. SPECIFICATION OF THE METAMATH LANGUAGE 115

4.1.4 Proof Verification

The sequence of labels between the $= and $. tokens in a $p statement is
a proof. Each label in a proof must be the label of an active statement
other than the $p statement itself; thus a label must refer either to an active
hypothesis of the $p statement or to an earlier assertion.

An expression is a sequence of math symbols. A substitution map
associates a set of variables with a set of expressions. It is acceptable for a
variable to be mapped to an expression containing it. A substitution is the
simultaneous replacement of all variables in one or more expressions with
the expressions that the variables map to.

A proof is scanned in order of its label sequence. If the label refers to an
active hypothesis, the expression in the hypothesis is pushed onto a stack.
If the label refers to an assertion, a (unique) substitution must exist that,
when made to the mandatory hypotheses of the referenced assertion, causes
them to match the topmost (i.e. most recent) entries of the stack, in order
of occurrence of the mandatory hypotheses, with the topmost stack entry
matching the last mandatory hypothesis of the referenced assertion. As many
stack entries as there are mandatory hypotheses are then popped from the
stack. The same substitution is made to the referenced assertion, and the
result is pushed onto the stack. After the last label in the proof is processed,
the stack must have a single entry that matches the expression in the $p
statement containing the proof.

A proof may contain a ? in place of a label to indicate an unknown step
(Section . A proof verifier may ignore any proof containing ? but should
warn the user that the proof is incomplete.

A compressed proof is an alternate proof notation described in Appen-
dix [B} also see references to “compressed proof” in the Index. Compressed
proofs are a Metamath language extension which a complete proof verifier
should be able to parse and verify.

Verifying Disjoint Variable Restrictions

Each substitution made in a proof must be checked to verify that any disjoint
variable restrictions are satisfied, as follows.

If two variables replaced by a substitution exist in a mandatory $d
statement of the assertion referenced, the two expressions resulting from the
substitution must satisfy the following conditions. First, the two expressions
must have no variables in common. Second, each possible pair of variables,
one from each expression, must exist in an active $d statement of the $p
statement containing the proof.

This ends the specification of the Metamath language; see Appendix
for its syntax in Extended Backus—Naur Form (EBNF).

116 CHAPTER 4. THE METAMATH LANGUAGE

4.2 The Basic Keywords

Our expository material begins here.

Like most computer languages, Metamath takes its input from one or
more source files which contain characters expressed in the standard ASCII
(American Standard Code for Information Interchange) code for computers.
A source file consists of a series of tokens, which are strings of non-whitespace
printable characters (from the set of 94 shown on p. separated by white
space (spaces, tabs, carriage returns, line feeds, and form feeds). Any string
consisting only of these characters is treated the same as a single space. The
non-whitespace printable characters that Metamath recognizes are the 94
characters on standard AScII keyboards.

Metamath has the ability to join several files together to form its input
(Section . We call the aggregate contents of all the files afte