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Preface

Overview

Metamath is a computer language and an as-
sociated computer program for archiving, ver-
ifying, and studying mathematical proofs at a
very detailed level. The Metamath language in-
corporates no mathematics per se but treats all
mathematical statements as mere sequences of
symbols. You provide Metamath with certain
special sequences (axioms) that tell it what rules
of inference are allowed. Metamath is not lim-
ited to any specific field of mathematics. The
Metamath language is simple and robust, with
an almost total absence of hard-wired syntax,



and I believe that it provides about the simplest
possible framework that allows essentially all of
mathematics to be expressed with absolute rigor.

Using the Metamath language, you can build
formal or mathematical systemg| that involve
inferences from axioms. Although a database
is provided that includes a recommended set of
axioms for standard mathematics, if you wish you
can supply your own symbols, syntax, axioms,
rules, and definitions.

The name “Metamath” was chosen to suggest
that the language provides a means for describing
mathematics rather than being the mathematics
itself. Actually in some sense any mathematical

LA formal or mathematical system consists of a collec-
tion of symbols (such as 2, 4, + and =), syntax rules that
describe how symbols may be combined to form a legal ex-
pression (called a well-formed formula or wff, pronounced
“whiff”), some starting wifs called axioms, and inference
rules that describe how theorems may be derived (proved)
from the axioms. A theorem is a mathematical fact such
as 2+ 2 = 4. Strictly speaking, even an obvious fact
such as this must be proved from axioms to be formally
acceptable to a mathematician.



language is metamathematical. Symbols writ-
ten on paper, or stored in a computer, are not
mathematics itself but rather a way of expressing
mathematics. For example “7” and “VII” are
symbols for denoting the number seven in Ara-
bic and Roman numerals; neither is the number
seven.

If you are able to understand and write com-
puter programs, you should be able to follow
abstract mathematics with the aid of Metamath.
Used in conjunction with standard textbooks,
Metamath can guide you step-by-step towards
an understanding of abstract mathematics from
a very rigorous viewpoint, even if you have no
formal abstract mathematics background. By us-
ing a single, consistent notation to express proofs,
once you grasp its basic concepts Metamath pro-
vides you with the ability to immediately follow
and dissect proofs even in totally unfamiliar ar-
eas.

Of course, just being able follow a proof will
not necessarily give you an intuitive familiarity
with mathematics. Memorizing the rules of chess



does not give you the ability to appreciate the
game of a master, and knowing how the notes on
a musical score map to piano keys does not give
you the ability to hear in your head how it would
sound. But each of these can be a first step.

Metamath allows you to explore proofs in the
sense that you can see the theorem referenced
at any step expanded in as much detail as you
want, right down to the underlying axioms of
logic and set theory (in the case of the set theory
database provided). While Metamath will not
replace the higher-level understanding that can
only be acquired through exercises and hard work,
being able to see how gaps in a proof are filled in
can give you increased confidence that can speed
up the learning process and save you time when
you get stuck.

The Metamath language breaks down a math-
ematical proof into its tiniest possible parts. These
can be pieced together, like interlocking pieces
in a puzzle, only in a way that produces correct
and absolutely rigorous mathematics.

The nature of Metamath enforces very precise



mathematical thinking, similar to that involved
in writing a computer program. A crucial dif-
ference, though, is that once a proof is verified
(by the Metamath program) to be correct, it is
definitely correct; it can never have a hidden
“bug.” After getting used to the kind of rigor and
accuracy provided by Metamath, you might even
be tempted to adopt the attitude that a proof
should never be considered correct until it has
been verified by a computer, just as you would
not completely trust a manual calculation until
you have verified it on a calculator.

My goal for Metamath was a system for de-
scribing and verifying mathematics that is com-
pletely universal yet conceptually as simple as
possible. In approaching mathematics from an
axiomatic, formal viewpoint, [ wanted Metamath
to be able to handle almost any mathematical
system, not necessarily with ease, but at least
in principle and hopefully in practice. I wanted
it to verify proofs with absolute rigor, and for
this reason Metamath is what might be thought
of as a “compile-only” language rather than an



algorithmic or Turing-machine language (Pascal,
C, Prolog, Mathematica, etc.). In other words, a
“program” (database) written in the Metamath
language doesn’t “do” anything; it merely ex-
hibits mathematical knowledge and permits this
knowledge to be verified as being correct. A pro-
gram in an algorithmic language can potentially
have hidden bugs as well as possibly being hard
to understand. But each token in a Metamath
database must be consistent with the database’s
earlier contents according to simple, fixed rules,
and if a database is syntactically correct | then
the mathematical content is correct with abso-
lute certainty (or at least to the certainty of the
verification program, which is relatively simple).
The only “bugs” that can exist are in the state-
ment of the axioms, for example if the axioms
are inconsistent (a famous problem shown to be
unsolvable by Godel’s incompleteness theorem).

Metamath doesn’t prove theorems automat-

2Here the notion of verifying correctness of syntax
includes verification that a sequential list of proof steps
results in the specified theorem.



ically but is designed to verify proofs that you
supply to it. Metamath is completely general
and has no built-in, preconceived notions about
your formal system, its logic or its syntax, but
the price for its generality is that it does not lend
itself well to automated proofs in its most gen-
eral form. (In principle it could accept translated
proofs from other, more specific theorem proving
programs, although nothing along those lines has
been done so far.) For constructing proofs, the
Metamath program has a Proof Assistant which
helps you fill in some of a proof step’s details,
shows you what choices you have at any step,
and verifies the proof as you build it; but you are
still expected to provide the proof.

Like most computer languages, the Metamath
language uses the standard (Ascir) characters
on a computer keyboard, so it cannot directly
represent many of the special symbols that math-
ematicians use. A useful feature of the Metamath
program is its ability to convert its notation into
the KTEX typesetting language. This feature lets
you convert the ASCII tokens you’ve defined into



standard mathematical symbols, so you end up
with symbols and formulas you are familiar with
instead of somewhat cryptic ASCII representa-
tions of them.

Metamath is probably conceptually different
from anything you've seen before and some as-
pects may take some getting used to. This book
will help you decide whether Metamath suits your
specific needs.

Setting Your Expectations

It is important for you to understand what Meta-
math is and is not. As mentioned, Metamath is
not an automated theorem prover but rather a
proof verifier. Developing a database can be te-
dious, hard work, especially if you want to make
the proofs as short as possible, but it becomes eas-
ier as you build up a collection of useful theorems.
The purpose of Metamath is simply to document
existing mathematics in an absolutely rigorous,
computer-verifiable way, not to aid directly in
the creation of new mathematics. It also is not a



magic solution for learning abstract mathematics,
although it may be helpful to be able to actually
see the implied rigor behind what you are learn-
ing from textbooks, as well as providing hints to
work out proofs that you are stumped on.

As of this writing, a sizable set theory database
has been developed to provide a foundation for
many fields of mathematics, but much more work
would be required to develop useful databases for
specific fields.

Metamath “knows no math;” it just provides
a framework in which to express mathematics.
Its language is very small. You can define two
kinds of symbols, constants and variables. The
only thing Metamath knows how to do is to sub-
stitute strings of symbols for the variables in an
expression based on instructions you provide it in
a proof, subject to certain constraints you specify
for the variables. Even the decimal representa-
tion of a number is merely a string of certain
constants (digits) which together, in a specific
context, correspond to whatever mathematical
object you choose to define for it; unlike other



computer languages, there is no actual number
stored inside the computer. In a proof, you in
effect instruct Metamath what symbol substitu-
tions to make in previous axioms or theorems
and join a sequence of them together to result in
the desired theorem. This kind of symbol manip-
ulation captures the essence of mathematics at a
preaxiomatic level.

Metamath and Mathematical Literature

In advanced mathematical literature, proofs are
usually presented in the form of short outlines
that often only an expert can follow. This is
partly out of a desire for brevity, but it would also
be unwise (even if it were practical) to present
proofs in complete formal detail, since the overall
picture would be lost.

A solution I envision that would allow math-
ematics to remain acceptable to the expert, yet
increase its accessibility to non-specialists, con-
sists of a combination of the traditional short,
informal proof in print accompanied by a com-



plete formal proof stored in a computer database.
In an analogy with a computer program, the
informal proof is like a set of comments that de-
scribe the overall reasoning and content of the
proof, whereas the computer database is like the
actual program and provides a means for anyone,
even a non-expert, to follow the proof in as much
detail as desired, exploring it back through lay-
ers of theorems (like subroutines that call other
subroutines) all the way back to the axioms of
the theory. In addition, the computer database
would have the advantage of providing absolute
assurance that the proof is correct, since each
step can be verified automatically.

There are several other approaches besides
Metamath to a project such as this. Section[I.3.3]
discusses some of these.

To me, a noble goal would be a ¢CD ROM with
hundreds of thousands of theorems and their
computer-verifiable proofs, encompassing a sig-
nificant fraction of known mathematics and avail-
able for instant access. Whether or not Meta-
math is an appropriate choice remains to be seen,



but in principle I believe it is sufficient.

Formalism

Over the past fifty years, a group of French
mathematicians working collectively under the
pseudonym of Bourbaki have co-authored a series
of monographs that attempt to rigorously and
consistently formalize large bodies of mathemat-
ics from foundations. On the one hand, certainly
such an effort has its merits; on the other hand,
the Bourbaki project has been criticized for its
“scholasticism” and “hyperaxiomatics” that hide
the intuitive steps that lead to the results [3]
p. 191].

Metamath unabashedly carries this philoso-
phy to its extreme and no doubt is subject to the
same kind of criticism. Nonetheless I think that
in conjunction with conventional approaches to
mathematics Metamath can serve a useful pur-
pose. The Bourbaki approach is essentially peda-
gogic, requiring the reader to become intimately
familiar with each detail in a very large hierarchy



before he or she can proceed to the next step.
The difference with Metamath is that the “reader”
(user) knows that all details are contained in its
computer database, available as needed; it does
not demand that the user know everything but
conveniently makes available those portions that
are of interest. As the body of all mathematical
knowledge grows larger and larger, no one indi-
vidual can have a thorough grasp of its entirety.
Metamath can finalize and put to rest any ques-
tions about the validity of any part of it and can
make any part of it accessible, in principle, to a
non-specialist.

A Personal Note

Why did I develop Metamath? I enjoy abstract
mathematics, but I sometimes get lost in a bar-
rage of definitions and start to lose confidence
that my proofs are correct. Or I reach a point
where I lose sight of how anything I'm doing re-
lates to the axioms that a theory is based on and
am sometimes suspicious that there may be some



overlooked implicit axiom accidentally introduced
along the way (as happened historically with Eu-
clidean geometry, whose omission of Pasch’s ax-
iom went unnoticed for 2000 years [I3], p. 160]!).
I'm also somewhat lazy and wish to avoid the
effort involved in re-verifying the gaps in infor-
mal proofs “left to the reader;” I prefer to figure
them out just once and not have to go through
the same frustration a year from now when I've
forgotten what I did. Metamath provides bet-
ter recovery of my efforts than scraps of paper
that I can’t decipher anymore. But mostly I find
very appealing the idea of rigorously archiving
mathematical knowledge in a computer database,
providing precision, certainty, and elimination of
human error.

Note on Bibliography and Index

The Bibliography usually includes the Library
of Congress classification for a work to make it
easier for you to find it in on a university library
shelf. The Index has author references to pages



where their works are cited, even though the
authors’ names may not appear on those pages.
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Note Added June 22, 2005

The original, unpublished version of this book
was written in 1997 and distributed via the web.
The present edition has been updated to reflect
the current Metamath program and databases,
as well as more current URLs for Internet sites.
Thanks to Josh Purinton, One Hand Clapping,
Mel L. O’Cat, and Roy F. Longton for pointing



out typographical and other errors. 1 have also
benefitted from numerous discussions with Raph
Levien, who has extended Metamath’s philosophy
of rigor to result in his Ghilbert proof language
(http://ghilbert.org).

Robert (Bob) Solovay communicated a new
result of A. R. D. Mathias on the system of Bour-
baki, and the text has been updated accordingly
(p. 42).

Bob also pointed out a clarification of the liter-
ature regarding category theory and inaccessible
cardinals (p. , and a misleading statement was
removed from the text. Specifically, contrary to
a statement in previous editions, it is possible to
express “There is a proper class of inaccessible
cardinals” in the language of ZFC. This can be
done as follows: “For every set x there is an inac-
cessible cardinal x such that x is not in z.” Bob
writesf]

This axiom is how Grothendieck
presents category theory. To each in-

3Private communication, Nov. 30, 2002.
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accessible cardinal x one associates
a Grothendieck universe U(k). U(k)
consists of those sets which lie in a
transitive set of cardinality less than
k. Instead of the “category of all
groups,” one works relative to a uni-
verse [considering the category of groups
of cardinality less than x|. Now the
category whose objects are all cate-
gories “relative” to the universe U(k)”
will be a category not relative to this
universe but to the next universe.
All of the things category theo-
rists like to do can be done in this
framework. The only controversial
point is whether the Grothendieck
axiom is too strong for the needs of
category theorists. Mac Lane argues
that “one universe is enough” and Fe-
ferman has argued that one can get
by with ordinary ZFC. I don’t find Fe-
ferman’s arguments persuasive. Mac
Lane may be right, but when I think



about category theory I do it a la
Grothendieck.

By the way Mizar adds the axiom
“there is a proper class of inaccessibles”
precisely so as to do category theory.

The most current information on the Meta-
math program and databases can always be found
at http://metamath.org.

Note Added June 24, 2006

The Metamath spec was restricted slightly to
make parsers easier to write. See the footnote on

p- [256]

Note Added March 10, 2007

[ am grateful to Anthony Williams for writing the
ETEX package called realref . sty and contribut-
ing it to the public domain. This package allows
the internal hyperlinks in a PDF file to anchor
to specific page numbers instead of just section


http://metamath.org

titles, making the navigation of the PDF file for
this book much more pleasant and “logical.”

A typographical error found by Martin Kiselkov
was corrected. A confusing remark about unifi-
cation was deleted per suggestion of Mel O’Cat.

Note Added May 27, 2009

Several typos found by Kim Sparre were cor-
rected. A note was added that the Poincaré
conjecture has been proved (p. [67).






Chapter 1

Introduction

ILM.: No, no. There’s nothing
subjective about it! Everybody knows
what a proof is. Just read some books,
take courses from a competent math-
ematician, and you’ll catch on.

Student: Are you sure?

LM.: Well—it is possible that you
won’t, if you don’t have any aptitude
for it. That can happen, too.



Student: Then you decide what a
proof is, and if I don’t learn to decide
i the same way, you decide I don’t
have any aptitude.

LM.: If not me, then who?

“THE IDEAL MATHEMATICIAN” []

In the past century, brilliant mathematicians
have discovered almost unimaginably profound
results that rank among the crowning intellectual
achievements of mankind. However, there is a
sense in which modern abstract mathematics is
behind the times, stuck in an era before comput-
ers existed. While no one disputes the remarkable
results that have been achieved, communicating
these results in a precise way to the uninitiated
is virtually impossible. To describe these results,
a terse informal language is used which despite
its elegance is very difficult to learn. This infor-
mal language is not imprecise, far from it, but
rather it often has omitted detail and symbols

HI3], p. 40



with hidden context that are implicitly under-
stood by an expert but few others. Extremely
complex technical meanings are associated with
innocent-sounding English words such as “com-
pact” and “measurable” that barely hint at what
is actually being said. Anyone who does not keep
the precise technical meaning constantly in mind
is bound to fail, and acquiring the ability to do
this can be achieved only through much practice
and hard work. Only the few who complete the
painful learning experience can join the small
in-group of pure mathematicians. The informal
language effectively cuts off the true nature of
their knowledge from most everyone else.
Metamath makes abstract mathematics more
concrete. It allows a computer to keep track
of the complexity associated with each word or
symbol with absolute rigor. You can explore this
complexity at your leisure, to whatever degree
you desire. Whether or not you believe that con-
cepts such as infinity actually “exist” outside of
the mind, Metamath lets you get to the founda-
tion for what’s really being said. Its language is



simple enough so that you don’t have to rely on
the authority of experts but can verify the results
yourself, step by step. If you want to attempt to
derive your own results, Metamath will not let
you make a mistake in reasoning.

“Metamath” is the name of a mathematical
computer language that describes formal mathe-
matical systems and expresses proofs of theorems
in those systems. Such a language is called a met-
alanguage by mathematicians. “Metamath” is
also the name of a computer program that verifies
proofs expressed in the language. The Metamath
program does not have the built-in ability to
make logical inferences; it just makes a series of
symbol substitutions according to instructions
given to it in a proof and verifies that the result
matches the expected theorem. It makes logical
inferences based only on rules of logic that are
contained in a set of axioms, or first principles,
that you provide to it as the starting point for
proofs.

The complete specification of the Metamath
language is only four pages long (Section



p. . Its simplicity may at first make you may
wonder how it can do much of anything at all.
But in fact the kinds of symbol manipulations
it performs are the ones that are implicitly done
in all mathematical systems at the lowest level.
You can learn it relatively quickly and have com-
plete confidence in any mathematical proof that
it verifies. On the other hand, it is powerful and
general enough so that virtually any mathemat-
ical theory, from the most basic to the deeply
abstract, can be described with it.

Although in principle Metamath can be used
with any kind of mathematics, it is best suited for
abstract or “pure” mathematics that is mostly
concerned with theorems and their proofs, as op-
posed to the kind of mathematics that deals with
the practical manipulation of numbers. Exam-
ples of branches of pure mathematics are logic]

2Logic is the study of statements that are universally
true regardless of the objects being described by the
statements. An example is the statement, “if P implies
Q, then either P is false or @ is true.”



set theoryﬂ number theoryﬁ group theoryﬂ ab-
stract algebraﬂ analysis |Z| and topologyﬁ Even

3Set theory is the study of general-purpose mathemat-
ical objects called “sets,” and from it essentially all of
mathematics can be derived. For example, numbers can
be defined as specific sets, and their properties can be
explored using the tools of set theory.

4Number theory deals with the properties of positive
and negative integers (whole numbers).

5Group theory studies the properties of mathematical
objects called groups that obey a simple set of axioms
and have properties of symmetry that make them useful
in many other fields.

6 Abstract algebra includes group theory and also stud-
ies groups with additional properties that qualify them as
“rings” and “fields.” The set of real numbers is a familiar
example of a field.

7Analysis is the study of real and complex numbers.

80ne area studied by topology are properties that
remain unchanged when geometrical objects undergo
stretching deformations; for example a doughnut and
a coffee cup each have one hole (the cup’s hole is in its
handle) and are thus considered topologically equivalent.
In general, though, topology is the study of abstract math-
ematical objects that obey a certain (surprisingly simple)
set of axioms. See, for example, Munkres [41I].



in physics, Metamath could be applied to certain
branches that make use of abstract mathematics,
such as quantum logic (used to study aspects of
quantum mechanics).

On the other hand, Metamath is less suited
to applications that deal primarily with inten-
sive numeric computations. Metamath does not
have any built-in representation of numbers; in-
stead, a specific string of symbols (digits) must
be syntactically constructed as part of any proof
in which an ordinary number is used. For this
reason, numbers in Metamath are best limited to
specific constants that arise during the course of
a theorem or its proof. Numbers are only a tiny
part of the world of abstract mathematics. The
exclusion of built-in numbers was a conscious
decision to help achieve Metamath’s simplicity,
and there are other software tools such as the
computer algebra programs MACSYMA, Mathe-
matica, and Maple specifically suited to handling
numbers efficiently.

After learning Metamath’s basic statement
types, any technically oriented person, mathe-



matician or not, can immediately trace any theo-
rem proved in the language as far back as he or
she wants, all the way to the axioms on which
the theorem is based. This ability suggests a
non-traditional way of learning about pure math-
ematics. Used in conjunction with traditional
methods, Metamath could make pure mathemat-
ics accessible to people who are not sufficiently
skilled to figure out the implicit detail in ordinary
textbook proofs. Once you learn the axioms of
a theory, you can have complete confidence that
everything you need to understand a proof you
are studying is all there, at your beck and call,
allowing you to focus in on any proof step you
don’t understand in as much depth as you need,
without worrying about getting stuck on a step
you can’t figure out f]

90n the other hand, writing proofs in the Metamath
language is challenging, requiring a degree of rigor far in
excess of that normally taught to students. In a classroom
setting, I doubt that writing Metamath proofs would ever
replace traditional homework exercises involving informal
proofs, because the time needed to work out the details



Metamath is probably unlike anything you
have encountered before. In this first chapter we
will look at the philosophy and use of computers
in mathematics in order to better understand
the motivation behind Metamath. The material
in this chapter is not required in order to use
Metamath. You may skip it if you are impatient,
but I hope you will find it educational and enjoy-
able. If you want to start experimenting with the
Metamath program right away, proceed directly
to Chapter [2| (p. . To learn the Metamath lan-
guage, skim Chapter [2] then proceed to Chapter [4]

(p- R47).

would not allow a course to cover much material. For
students who have trouble grasping the implied rigor in
traditional material, writing a few simple proofs in the
Metamath language might help clarify fuzzy thought pro-
cesses. Although somewhat difficult at first, it eventually
becomes fun to do, like solving a puzzle, because of the
instant feedback provided by the computer.




1.1 Mathematics as a Com-
puter Language

The study of mathematics is apt to
commence in disappointment.. . .

We are told that by its aid the stars
are weighted and the billions of molecules
in a drop of water are counted. Yet,
like the ghost of Hamlet’s father, this
great science eludes the efforts of our
mental weapons to grasp it.

ALFRED NORTH WHITEHEAD]

1.1.1 1Is Mathematics “User-Friend

Suppose you have no formal training in abstract
mathematics. But popular books you've read
offer tempting glimpses of this world filled with
profound ideas that have stirred the human spirit.

0[64], ch. 1



You are not satisfied with the informal, watered-
down descriptions you've read but feel it is impor-
tant to grasp the underlying mathematics itself
to understand its true meaning. It’s not practi-
cal to go back to school to learn it, though; you
don’t want to dedicate years of your life to it.
There are many important things in life, and you
have to set priorities for what’s important to you.
What would happen if you tried to pursue it on
your own, in your spare time?

After all, you were able to learn a computer
programming language such as Pascal on your
own without too much difficulty, even though you
had no formal training in computers. You don’t
claim to be an expert in software design, but you
can write a passable program when necessary to
suit your needs. Even more important, you know
that you can look at anyone else’s Pascal pro-
gram, no matter how complex, and with enough
patience figure out exactly how it works, even
though you are not a specialist. Pascal allows
you do anything that a computer can do, at least
in principle. Thus you know you have the ability,



in principle, to follow anything that a computer
program can do: you just have to break it down
into small enough pieces.

Here’s an imaginary scenario of what might
happen if you naively adopted this same view
of abstract mathematics and tried to pick it up
on your own, in a period of time comparable
to, saying, learning a computer programming
language.

A Non-Mathematician’s Quest for Truth

.. my daughters have been studying
(chemistry) for several semesters, think
they have learned differential and in-
tegral calculus in school, and yet even
today don’t know why x -y =1vy-x is
true.

EpMUND LANDAU

300, p. vi



Minus times minus is plus,
The reason for this we need not dis-
Cuss.

W. H. AupeENY

We'll suppose you are technically oriented
professional, perhaps an engineer, a computer
programmer, or a physicist, but probably not
a mathematician. You consider yourself reason-
ably intelligent. You did well in school, learning
a variety of methods and techniques in practi-
cal mathematics such as calculus and differential
equations. But rarely did your courses get into
anything resembling modern abstract mathemat-
ics, and proofs were something that appeared
only occasionally in your textbooks, a kind of
necessary evil that was supposed to convince you
of a certain key result. Most of your homework
consisted of exercises that gave you practice in
the techniques, and you were hardly ever asked
to come up with a proof of your own.

12As quoted in [I8], p. 64



You find yourself curious about advanced, ab-
stract mathematics. You are driven by an inner
conviction that it is important to understand
and appreciate some of the most profound knowl-
edge discovered by mankind. But it seems very
hard to learn, something that only certain gifted
longhairs can access and understand. You are
frustrated that it seems forever cut off from you.

Eventually your curiosity drives you to do
something about it. You set for yourself a goal of
“really” understanding mathematics: not just how
to manipulate equations in algebra or calculus
according to cookbook rules, but rather to gain
a deep understanding of where those rules come
from. In fact, you're not thinking about this
kind of ordinary mathematics at all, but about a
much more abstract, ethereal realm of pure math-
ematics, where famous results such as Godel’s
incompleteness theorem and Cantor’s different
kinds of infinities reside.

You have probably read a number of popular
books, with titles like Infinity and the Mind [51],
on topics such as these. You found them inspiring



but at the same time somewhat unsatisfactory.
They gave you a general idea of what these results
are about, but if someone asked you to prove
them, you wouldn’t have the faintest idea of
where to begin. Sure, you could give the same
overall outline that you learned from the popular
books; and in a general sort of way, you do have
an understanding. But deep down inside, you
know that there is a rigor that is missing, that
probably there are many subtle steps and pitfalls
along the way, and ultimately it seems you have
to place your trust in the experts in the field.
You don’t like this; you want to be able to verify
these results for yourself.

So where do you go next? As a first step, you
decide to look up some of the original papers on
the theorems you are curious about, or better,
obtain some standard textbooks in the field. You
look up a theorem you want to understand. Sure
enough, it’s there, but it’s expressed with strange
terms and odd symbols that mean absolutely
nothing to you. It might as well be written in a
foreign language you’ve never seen before, whose



symbols are totally alien. You look at the proof,
and you haven’t the foggiest notion what each
step means, much less how one step follows from
another. Well, obviously you have a lot to learn
if you want to understand this stuff.

You feel that you could probably understand
it by going back to college for another three to
six years and getting a math degree. But that
does not fit in with your career and the other
things in your life and would serve no practical
purpose. You decide to seek a quicker path. You
figure you’ll just trace your way back to the be-
ginning, step by step, as you would do with a
computer program, until you understand it. But
you quickly find that this is not possible, since
you can’t even understand enough to know what
you have to trace back to.

Maybe a different approach is in order—maybe
you should start at the beginning and work your
way up. First, you read the introduction to the
book to find out what the prerequisites are. In a
similar fashion, you trace your way back through
two or three more books, finally arriving at one



that seems to start at a beginning: it lists the
axioms of arithmetic. “Aha!” you naively think,
“This must be the starting point, the source of all
mathematical knowledge.” Or at least the start-
ing point for mathematics dealing with numbers;
you have to start somewhere and have no idea
what the starting point for other mathematics
would be. But the word “axioms” looks promis-
ing. So you eagerly read along and work through
some elementary exercises at the beginning of
the book. You feel vaguely bothered: these don’t
seem like axioms at all, at least not in the sense
that you want to think of axioms. Axioms imply
a starting point from which everything else can
be built up, according to precise rules specified
in the axiom system. Even though you can un-
derstand first few proofs in an informal way, and
are able to do some of the exercises, it’s hard to
pin down precisely what the rules are. Sure, each
step seems to follow logically from the others,
but exactly what does that mean? Is the “logic”
just a matter of common sense, something vague
that we all understand but can never quite state



precisely?

You've spent a number of years, off and on,
programming computers, and you know that in
the case of computer languages there is no ques-
tion of what the rules are—they are precise and
crystal clear. If you follow them, your program
will work, and if you don’t, it won’t. No matter
how complex a program, it can always be broken
down into simpler and simpler pieces, until you
can ultimately identify the bits that are moved
around to perform a specific function. Some
programs might require a lot of perseverance to
accomplish this, but if you focus on a specific
portion of it, you don’t even necessarily have to
know how the rest of it works. Shouldn’t there
be an analogy in mathematics?

You decide to apply the ultimate test: you ask
yourself how a computer could verify or ensure
that the steps in these proofs follow from one
another. Certainly mathematics must be at least
as precisely defined as a computer language, if
not more so; after all, computer science itself is
based on it. If you can get a computer to verify



these proofs, then you should also be able, in
principle, to understand them yourself in a very
crystal clear, precise way.

You're in for a surprise: you can conceive of
no way to convert the proofs, which are in English,
to a form that the computer can understand. The
proofs are filled with phrases such as “assume
there exists a unique z...” and “given any v,
let z be the number such that...” This isn’t
the kind of logic you are used to in computer
programming, where everything, even arithmetic,
reduces to Boolean ones and zeroes if you care
to break it down sufficiently. Even though you
think you understand the proofs, there seems to
be some kind of higher reasoning involved rather
than precise rules that define how you manipulate
the symbols in the axioms. Whatever it is, it
just isn’t obvious how you would express it to
a computer, and the more you think about it,
the more puzzled and confused you get, to the
point where you even wonder whether you really
understand it. There’s a lot more to these axioms
of arithmetic than meets the eye.



Nobody ever talked about this in school in
your applied math and engineering courses. You
just learned the rules they gave you, not quite
understanding how or why they worked, some-
times vaguely suspicious or uncertain of them,
and through homework problems and osmosis
learned how to present solutions that satisfied
the instructor and earned you an “A.” Rarely
did you actually “prove” anything in a rigorous
way, and the math majors who did do stuff like
that seemed to be in a different world.

Of course, there are computer algebra pro-
grams that can do mathematics, and rather im-
pressively. They can instantly solve the integrals
that you struggled with in freshman calculus,
and do much, much more. But when you look at
these programs, what you see is a big collection of
algorithms and techniques that evolved and were
added to over time, along with some basic soft-
ware that manipulates symbols. Each algorithm
that is built in is the result of someone’s theorem
whose proof is omitted; you just have to trust
the person who proved it and the person who



programmed it in and hope there are no bugs.
Somehow this doesn’t seem to be the essence of
mathematics. Although computer algebra sys-
tems can generate theorems with amazing speed,
they can’t actually prove a single one of them.

After some puzzlement, you revisit some pop-
ular books on what mathematics is all about.
Somewhere you read that all of mathematics is
actually derived from something called “set the-
ory.” This is a little confusing, because no where
in the book that presented the axioms of arith-
metic was there any mention of set theory, or
if there was, it seemed to be just a tool that
helps you describe things better—the set of even
numbers, that sort of thing. If set theory is the
basis for all mathematics, then why are additional
axioms needed for arithmetic?

Something is wrong but you're not sure what.
One of your friends is a pure mathematician.
He knows he is unable to communicate to you
what he does for a living and seems to have little
interest in trying. You do know that for him,
proofs are what mathematics is all about. You



ask him what a proof is, and he essentially tells
you that, while of course it’s based on logic, really
it’s something you learn by doing it over and over
until you pick it up. He refers you to a book,
How to Read and Do Proofs [55]. Although this
book helps you understand traditional informal
proofs, there is still something missing you can’t
seem to pin down yet.

You ask your friend how you would go about
having a computer verify a proof. At first he
seems puzzled by the question; why would you
want to do that? Then he says it’s not something
that would make any sense to do, but he’s heard
that you’d have to break the proof down into
thousands or even millions of individual steps to
do such a thing, because the reasoning involved
is at such a high level of abstraction. He says
that maybe it’s something you could do up to
a point, but the computer would be completely
impractical once you get into any meaningful
mathematics. There, the only way you can verify
a proof is by hand, and you can only acquire the
ability to do this by specializing in the field for a



couple of years in grad school. Anyway, he thinks
it all has to do with set theory, although he has
never taken a formal course in set theory but just
learned what he needed as he went along.

You are intrigued and amazed. Apparently
a mathematician can grasp as a single concept
something that would take a computer a thou-
sand or a million steps to verify, and have com-
plete confidence in it. Each one of these thousand
or million steps must be absolutely correct, or
else the whole proof is meaningless. If you added
a million numbers by hand, would you trust the
result? How do you really know that all these
steps are correct, that there isn’t some subtle
pitfall in one of these million steps, like a bug in
a computer program? After all, you've read that
famous mathematicians have occasionally made
mistakes, and you certainly know you’ve made
your share on your math homework problems in
school.

You recall the analogy with a computer pro-
gram. Sure, you can understand what a large
computer program such as a word processor does,



as a single high-level concept or a small set of
such concepts, but your ability to understand it
in no way ensures that the program is correct
and doesn’t have hidden bugs. Even if you wrote
the program yourself you can’t really know this;
most large programs that you’ve written have
had bugs that crop up at some later date, no
matter how careful you tried to be while writing
them.

OK, so now it seems the reason you can’t
figure out how to make a computer verify proofs is
because each step really corresponds to a million
small steps. Well, you say, a computer can do
a million calculations in a second, so maybe it’s
still practical to do. Now the puzzle becomes
how to figure out what the million steps are
that each English-language step corresponds to.
Your mathematician friend hasn’t a clue, but
suggests that maybe you would find the answer by
studying set theory. Actually, your friend thinks
you're a little off the wall for even wondering such
a thing. For him, this is not what mathematics
is all about.



The subject of set theory keeps popping up,
so you decide it’s time to look it up.

You decide to start off on a careful footing,
so you start reading a couple of very elementary
books on set theory. A lot of it seems pretty
obvious, like intersections, subsets, and Venn di-
agrams. You thumb through one of the books;
nowhere is anything about axioms mentioned.
The other book relegates to an appendix a brief
discussion that mentions a set of axioms called
“Zermelo-Fraenkel set theory” and states them in
English. You look at them and have no idea what
they really mean or what you can do with them.
The comments in this appendix say that the pur-
pose of mentioning them is to expose you to the
idea, but imply that they are not necessary for
basic understanding and that they are really the
subject matter of advanced treatments where fine
points such as a certain paradox (Russell’s para-
doxIT_gD are resolved. Wait a minute—shouldn’t
the axioms be a starting point, not an ending

13Russell’s paradox assumes that there exists a set S
that is a collection of all sets that don’t contain themselves.



point? If there are paradoxes that arise without
the axioms, how do you know you won’t stumble
across one accidentally when using the informal
approach?

And nowhere do these books describe how “all
of mathematics can be derived from set theory”
which by now you've heard a few times.

You find a more advanced book on set theory.
This one actually lists the axioms of ZF set theory
in plain English on page one. Now you think
your quest has ended and you've finally found
the source of all mathematical knowledge; you
just have to understand what it means. Here,
in one place, is the basis for all of mathematics!
You stare at the axioms in awe, puzzle over them,
memorize them, hoping that if you just meditate
on them long enough they will become clear. Of
course, you haven’t the slightest idea how the

Now, either S contains itself or it doesn’t. If it contains
itself, it contradicts its definition. But if it doesn’t contain
itself, it also contradicts its definition. Russell’s paradox
is resolved in ZF set theory by denying that such a set S
exists.



rest of mathematics is “derived” from them; in
particular, if these are the axioms of mathematics,
then why do arithmetic, group theory, and so on
need their own axioms?

You start reading this advanced book care-
fully, pondering the meaning of every word, be-
cause by now you're really determined to get to
the bottom of this. The first thing the book does
is explain how the axioms came about, which
was to resolve Russell’s paradox. In fact that
seems to be the main purpose of their existence;
that they supposedly can be used to derive all
of mathematics seems irrelevant and is not even
mentioned. Well, you go on. You hope the book
will explain to you clearly, step by step, how to
derive things from the axioms. After all, this is
the starting point of mathematics, like a book
that explains the basics of a computer program-
ming language. But something is missing. You
find you can’t even understand the first proof or
do the first exercise. Symbols such as 4 and V
permeate the page without any mention of where
they came from or how to manipulate them; the



author assumes you are totally familiar with them
and doesn’t even tell you what they mean. By
now you know that 3 means “there exists” and
YV means “for all,” but shouldn’t the rules for
manipulating these symbols be part of the ax-
ioms? You still have no idea how you could even
describe the axioms to a computer.

Certainly there is something much different
here from the technical literature you're used to
reading. A computer language manual almost
always explains very clearly what all the symbols
mean, precisely what they do, and the rules used
for combining them, and you work your way up
from there.

After glancing at four or five other such books,
you come to the realization that there is another
whole field of study that you need just to get
to the point at which you can understand the
axioms of set theory. The field is called “logic.’
In fact, some of the books did recommend it as
a prerequisite, but it just didn’t sink in. You
assumed logic was, well, just logic, something
that a person with common sense intuitively un-

)



derstood. Why waste your time reading boring
treatises on symbolic logic, the manipulation of
1’s and 0’s that computers do, when you already
know that? But this is a different kind of logic,
quite alien to you. The subject of NAND and NOR
gates is not even touched upon or in any case has
to do with only a very small part of this field.
So your quest continues. Skimming through
the first couple of introductory books, you get
a general idea of what logic is about and what
quantifiers (“for all,” “there exists”) mean, but
you find their examples somewhat trivial and
mildly annoying (“all dogs are animals,” “some
animals are dogs,” and such). But all you want
to know is what the rules are for manipulating
the symbols so you can apply them to set the-
ory. Some formulas describing the relationships
among quantifiers (3 and V) are listed in tables,
along with some verbal reasoning to justify them.
Presumably, if you want to find out if a formula is
correct, you go through this same kind of mental
reasoning process, possibly using images of dogs
and animals. Intuitively, the formulas seem to



make sense. But when you ask yourself, “What
are the rules I need to get a computer to fig-
ure out whether this formula is correct?”, you
still don’t know. Certainly you don’t ask the
computer to imagine dogs and animals.

You look at some more advanced logic books.
Many of them have an introductory chapter sum-
marizing set theory, which turns out to be a
prerequisite. You need logic to understand set
theory, but it seems you also need set theory to
understand logic! These books jump right into
proving rather advanced theorems about logic,
without offering the faintest clue about where
the logic came from that allows them to prove
these theorems.

Luckily, you come across an elementary book
of logic that, halfway through, after the usual
truth tables and metaphors, presents in a clear,
precise way what you’ve been looking for all along:
the axioms! They’re divided into propositional
calculus (also called sentential logic) and predi-
cate calculus (also called first-order logic), with
rules so simple and crystal clear that now you



can finally program a computer to understand
them. Indeed, they’'re no harder than learning
how to play a game of chess. As far as what you
seem to need is concerned, the whole book could
have been written in five pages!

Now you think you've found the ultimate
source of mathematical truth. So—the axioms
of mathematics consist of these axioms of logic,
together with the axioms of ZF set theory. (By
now you’ve also been able to figure out how to
translate the ZF axioms from English into the
actual symbols of logic which you can now ma-
nipulate according to precise, easy-to-understand
rules.)

Of course, you still don’t understand how “all
of mathematics can be derived from set theory,”
but maybe this will reveal itself in due course.

You eagerly set out to program the axioms
and rules into a computer and start to look at
the theorems you will have to prove as the logic
is developed. All sorts of important theorems
start popping up: the deduction theorem, the
substitution theorem, the completeness theorem



of propositional calculus, the completeness the-
orem of predicate calculus. Uh-oh, there seems
to be trouble. They all get harder and harder,
and not one of them can be derived with the ax-
ioms and rules of logic you’ve just been handed.
Instead, they all require “metalogic” for their
proofs, a kind of mixture of logic and set theory
that allows you to prove things about the axioms
and theorems of logic rather than with them.
You plow ahead anyway. A month later,
you've spent much of your free time getting the
computer to verify proofs in propositional cal-
culus. You've programmed in the axioms, but
you’'ve also had to program in the deduction theo-
rem, the substitution theorem, and the complete-
ness theorem of propositional calculus, which by
now you've resigned yourself to treating as rather
complex additional axioms, since they can’t be
proved from the axioms you were given. You can
now get the computer to verify and even generate
complete, rigorous, formal proofs. Never mind
that they may have 100,000 steps—at least now
you can have complete, absolute confidence in



them. Unfortunately, the only theorems you have
proved are pretty trivial and you can easily verify
them in a few minutes with truth tables, if not
by inspection.

It looks like your mathematician friend was
right. Getting the computer to do serious mathe-
matics with this kind of rigor seems almost hope-
less. Even worse, it seems that the further along
you get, the more “axioms” you have to add, as
each new theorem seems to involve additional
“metamathematical” reasoning that hasn’t been
formalized, and none of it can be derived from the
axioms of logic. Not only do the proofs keep grow-
ing exponentially as you get further along, but
the program to verify them keeps getting bigger
and bigger as you program in more “metatheo-
rems.”[[] The bugs that have cropped up so far

14 A metatheorem is usually a statement that is too
general to be directly provable in a theory. For example,
“if n1, ng, and ng are integers, then ny; + ny + ng3 is an
integer” is a theorem of number theory. But “for any
integer k > 1, if nq,...,ng are integers, then ni +...+n
is an integer” is a metatheorem, in other words a family of



have already made you start to lose faith in the
rigor you seem to have achieved, and you know
it’s just going to get worse as your program gets
larger.

Kok

1.1.2 Mathematics and the Non-
Specialist
A real proof is not checkable by a ma-
chine, or even by any mathematician
not privy to the gestalt, the mode of

thought of the particular field of math-
ematics in which the proof is located.

DAvVIS AND HERrsH [

theorems, one for every k. The reason it is not a theorem
is that the general sum ny + ...+ ng (as a function of k)
is not an operation that can be defined directly in number
theory.

15[13], p. 354



The bulk of abstract or theoretical mathemat-
ics is ordinarily outside the reach of anyone but a
few specialists in each field who have completed
the necessary difficult internship in order to en-
ter its coterie. The typical intelligent layperson
has no reasonable hope of understanding much
of it, nor even the specialist mathematician of
understanding other fields. It is like a foreign
language that has no dictionary to look up the
translation; the only way you can learn it is by
living in the country for a few years. It is argued
that the effort involved in learning a specialty is
a necessary process for acquiring a deep under-
standing. Of course, this is almost certainly true
if one is to make significant contributions to a
field; in particular, “doing” proofs is probably
the most important part of a mathematician’s
training. But is it also necessary to deny out-
siders access to it? Is it necessary that abstract
mathematics be so hard for a layperson to grasp?

A computer normally is of no help whatso-
ever. Most published proofs are actually just
series of hints written in an informal style that



requires considerable knowledge of the field to
understand. These are the “real proofs” referred
to by Davis and Hersh. There is an implicit un-
derstanding that, in principle, such a proof could
be converted to a complete formal proof. How-
ever, it is said that no one would ever attempt
such a conversion, even if they could, because
that would presumably require millions of steps
(Section [1.1.3). Unfortunately the informal style
automatically excludes the understanding of the
proof by anyone who hasn’t gone through the
necessary apprenticeship. The best that the intel-
ligent layperson can do is to read popular books
about deep and famous results; while this can
be helpful, it can also be misleading, and the
lack of detail usually leaves the reader with no
ability whatsoever to explore any aspect of the
field being described.

The statements of theorems often use sophis-
ticated notation that makes them inaccessible to
the non-specialist. For a non-specialist who wants
to achieve a deeper understanding of a proof, the
process of tracing definitions and lemmas back



through their hierarchy quickly becomes confus-
ing and discouraging. Textbooks are usually writ-
ten to train mathematicians or to communicate
to people who are already mathematicians, and
large gaps in proofs are often left as exercises to
the reader who is left at an impasse if he or she
becomes stuck.

I believe that eventually computers will en-
able non-specialists and even intelligent layper-
sons to follow almost any mathematical proof
in any field. Metamath is an attempt in that
direction. If all of mathematics were as easily
accessible as a computer programming language,
I could envision computer programmers and hob-
byists who otherwise lack mathematical sophisti-
cation exploring and being amazed by the world
of theorems and proofs in obscure specialties, per-
haps even coming up with results of their own.
A tremendous advantage would be that anyone
could experiment with conjectures in any field—
the computer would offer instant feedback as to
whether an inference step was correct.

Mathematicians sometimes have to put up



with the annoyance of cranks who lack a funda-
mental understanding of mathematics but insist
that their “proofs” of, say, Fermat’s Last The-
orem be taken seriously. I think part of the
problem is that these people are mislead by in-
formal mathematical language, treating it as if
they were reading ordinary expository English
and failing to appreciate the implicit underlying
rigor. Such cranks are rare in the field of comput-
ers, because computer languages are much more
explicit, and ultimately the proof is in whether
a computer program works or not. With easily
accessible computer-based abstract mathematics,
a mathematician could say to a crank, “don’t
bother me until you’ve demonstrated your claim
on the computer!”

1.1.3 An Impossible Dream?

FEven quite basic theorems would de-
mand almost unbelievably vast books
to display their proofs.



ROBERT E. EDWARDY]

Oh, of course no one ever really does
it. It would take forever! You just
show that you could do it, that’s suf-
ficient.

“THE IDEAL MATHEMATICIAN" [7]

There is a theorem in the primitive
notation of set theory that corresponds
to the arithmetic theorem 10004-2000 =
3000°. The formula would be forbid-
dingly long. . . even if [one] knows the
definitions and is asked to simplify
the long formula according to them,
chances are he will make errors and
arrive at some incorrect result.

Hao WandD®




The Principia Mathematica was the
crowning achievement of the formal-
ists. It was also the deathblow of the
formalist view.. ..

[Russell] failed, in three enormous
volumes, to get beyond the elemen-
tary facts of arithmetic. He showed
what can be done in principle and
what cannot be done in practice. If
the mathematical process were really
one of strict, logical progression, we
would still be counting our fingers.. . .
One theoretician estimates, for in-
stance, that a demonstration of one
of Ramanugjan’s conjectures assum-
ing set theory and elementary anal-
ysis would take about two thousand
pages; the length of a deduction from
first principles is nearly inconceiva-
ble. .. The probabilists argue that. . . any
very long proof can at best be viewed
as only probably correct. . .



RICHARD DE MILLO ET. AL

A number of writers have conveyed the im-
pression that the kind of absolute rigor provided
by Metamath is an impossible dream, suggesting
that a complete, formal verification of a typical
theorem would take millions of steps in untold
volumes of books. Even if it could be done, the
thinking sometimes goes, all meaning would be
lost in such a monstrous, tedious verification.

These writers assume, however, that in order
to achieve the kind of complete formal verifica-
tion they desire one must break down a proof
into individual primitive steps that make direct
reference to the axioms. This is not necessary.
There is no reason not to make use of previously
proved theorems rather than proving them over
and over.

Just as important, definitions can be intro-
duced along the way, allowing very complex for-
mulas to be represented with few symbols. Not
doing this can lead to absurdly long formulas. For

19114], pp. 269, 271



example, Godel’s incompleteness theorem, which
can be expressed with a small number of defined
symbols, would require about 20,000 primitive
symbols to express it.@ An extreme example is
Bourbaki’s language for set theory, which requires
4,523,659,424,929 symbols plus 1,179,618,517,981
disambiguatory links (lines connecting symbol
pairs, usually drawn below or above the formula)
to express the number “one” [33].

A hierarchy of theorems and definitions per-
mits an exponential growth in the formula sizes
and primitive proof steps to be described with
only a linear growth in the number of symbols
used. Of course, this is how ordinary informal
mathematics is normally done anyway, but with
Metamath it can be done with absolute rigor and
precision.

20George S. Boolos, lecture at Massachusetts Institute
of Technology, spring 1990



1.1.4 Beauty

No one shall be able to drive us from
the paradise that Cantor has created
for us.

DAvVID HILBERTEY

Mathematics possesses not only truth,
but some supreme beauty —a beauty
cold and austere, like that of a sculp-
ture.

BERTRAND RUSSELIZ]

FEuclid alone has looked on Beauty
bare.

EDNA MILLAYE]

21 As quoted in [40], p. 131
22[53}
2 As quoted in [13], p. 150



For most people, abstract mathematics is dis-
tant, strange, and incomprehensible. Many pop-
ular books have tried to convey some of the sense
of beauty in famous theorems. But even an intel-
ligent layperson is left with only a general idea of
what a theorem is about and is hardly given the
tools needed to make use of it. Traditionally, it
is only after years of arduous study that one can
grasp the concepts needed for deep understand-
ing. Metamath allows you to approach the proof
of the theorem from a quite different perspective,
peeling apart the formulas and definitions layer
by layer until an entirely different kind of un-
derstanding is achieved. Every step of the proof
is there, pieced together with absolute precision
and instantly available for inspection through a
microscope with a magnification as powerful as
you desire.

A proof in itself can be considered an object
of beauty. Constructing an elegant proof is an
art. Once a famous theorem has been proved,
often considerable effort is made to find simpler
and more easily understood proofs. Creating and



communicating elegant proofs is a major concern
of mathematicians. Metamath is one way of
providing a common language for archiving and
preserving this information.

The length of a proof can, to a certain ex-
tent, be considered an objective measure of its
“beauty,” since shorter proofs are usually consid-
ered more elegant. In the set theory database
set.mm provided with Metamath, one goal was
to make all proofs as short as possible.

1.1.5 Simplicity

God made man simple; man’s com-
plex problems are of his own devising.

EccLEs. 7:292

God made integers, all else is the
work of man.

24 Jerusalem Bible



LEOPOLD KRONECKERZ)

For what is clear and easily compre-
hended attracts; the complicated re-
pels.

DAvVID HILBERTEY

The Metamath language is simple and Spar-
tan. Metamath treats all mathematical expres-
sions as simple sequences of symbols, devoid of
meaning. The higher-level or “metamathemati-
cal” notions underlying Metamath are about as
simple as they could possibly be. Each individual
step in a proof involves a single basic concept, the
substitution of an expression for a variable, so
that in principle almost anyone, whether mathe-
matician or not, can completely understand how
it was arrived at.

25 Jahresberichte der Deutschen Mathematicker Vereini-
gung, bk. 2
26 As quoted in [14], p. 273



In one of its most basic applications, Meta-
math can be used to develop the foundations of
mathematics from the very beginning. This is
done in the set theory database that is provided
with the Metamath package and is the subject
matter of Chapter . Any language (a metalan-
guage) used to describe mathematics (an object
language) must have a mathematical content of
its own, but it is desirable to keep this content
down to a bare minimum, namely that needed
to make use of the inference rules specified by
the axioms. With any metalanguage there is a
“chicken and egg” problem somewhat like circu-
lar reasoning: you must assume the validity of
the mathematics of the metalanguage in order
to prove the validity of the mathematics of the
object language. The mathematical content of
Metamath itself is quite limited. Like the rules of
a game of chess, the essential concepts are simple
enough so that virtually anyone should be able
to understand them (although that in itself will
not let you play like a master). The symbols that
Metamath manipulates do not in themselves have



any intrinsic meaning. Your interpretation of the
axioms that you supply to Metamath is what
gives them meaning. Metamath is an attempt
to strip down mathematical thought to its bare
essence and show you exactly how the symbols
are manipulated.

Philosophers and logicians, with various moti-
vations, have often thought it important to study
“weak” fragments of logic [2] [35], other uncon-
ventional systems of logic (such as “modal” logic
[8, ch. 27]), and quantum logic in physics [44].
Metamath provides a framework in which such
systems can be expressed, with an absolute preci-
sion that makes all underlying metamathematical
assumptions rigorous and crystal clear.

Some schools of philosophical thought, for ex-
ample intuitionism and constructivism, demand
that the notions underlying any mathematical
system be as simple and concrete as possible.
Metamath should meet the requirements of these
philosophies. Metamath must be taught the sym-
bols, axioms, and rules for a specific theory, from



the skeptical (such as intuitionismED to the bold

(such as the axiom of choice in set theory@.
The simplicity of the Metamath language lets

the algorithm (computer program) that verifies

2"Intuitionism does not accept the law of excluded
middle (“either something is true or it is not true”). See
[62] p. xi] for discussion and references on this topic.
Counsider the theorem, “There exist irrational numbers
a and b such that a® is rational.” An intuitionist would

2
reject the following proof: If v/2"~ is rational, we are

done. Otherwise, let a = \/5\/5 and b = /2. Then a® = 2,
which is rational.

28The axiom of choice asserts that given any collection
of pairwise disjoint nonempty sets, there exists a set that
has exactly one element in common with each set of the
collection. It is used to prove many important theorems
in standard mathematics. Some philosophers object to it
because it asserts the existence of a set without specifying
what the set contains [16, p. 154]. In one foundation for
mathematics due to Quine, that has not been otherwise
shown to be inconsistent, the axiom of choice turns out
to be false [12] p. 23]. The show trace_back command
of the Metamath program allows you to find out whether
the axiom of choice, or any other axiom, was assumed by
a proof.



the validity of a Metamath proof to be straight-
forward and robust. You can have confidence
that the theorems it verifies really can be derived
from your axioms.

1.1.6 Rigor

Rigor became a goal with the Greeks. .. But
the efforts to pursue rigor to the ut-
most have led to an impasse in which
there is no longer any agreement on
what it really means. Mathematics
remains alive and vital, but only on

a pragmatic basis.

MOoRRIS KLINHY]

Kline refers to a much deeper kind of rigor
than that which we will discuss in this section.
Godel’s incompleteness theorem showed that it is
impossible to achieve absolute rigor in standard
mathematics because we can never prove that

29127, p. 1209



mathematics is consistent (free from contradic-
tions). If mathematics is consistent, we will never
know it, but must rely on faith. If mathematics
is inconsistent, the best we can hope for is that
some clever future mathematician will discover
the inconsistency. In this case, the axioms would
probably be revised slightly to eliminate the in-
consistency, as was done in the case of Russell’s
paradox, but the bulk of mathematics would prob-
ably not be affected by such a discovery. Russell’s
paradox, for example, did not affect most of the
remarkable results achieved by 19th-century and
earlier mathematicians. It mainly invalidated
some of Gottlob Frege’s work on the foundations
of mathematics in the late 1800’s; in fact Frege’s
work inspired Russell’s discovery. Despite the
paradox, Frege’s work contains important con-
cepts that have significantly influenced modern
logic. Kline’s Mathematics, The Loss of Cer-
tainty [28] has an interesting discussion of this
topic.

What can be achieved with absolute certainty
is the knowledge that if we assume the axioms are



consistent and true, then the results derived from
them are true. Part of the beauty of mathematics
is that it is the one area of human endeavor
where absolute certainty can be achieved in this
sense. A mathematical truth will remain such
for eternity. However, our actual knowledge of
whether a particular statement is a mathematical
truth is only as certain as the correctness of
the proof that establishes it. If the proof of
a statement is questionable or vague, we can’t
have absolute confidence in the truth that the
statement claims.

Let us look at some traditional ways of ex-
pressing proofs.

Except in the field of formal logic, almost all
traditional proofs in mathematics are really not
proofs at all, but rather proof outlines or hints
as to how to go about constructing the proof.
Many gaps are left for the reader to fill in. There
are several reasons for this. First, it is usually
assumed in mathematical literature that the per-
son reading the proof is a mathematician familiar
with the specialty being described, and that the



missing steps are obvious to such a reader or at
least that the reader is capable of filling them in.
This attitude is fine for professional mathemati-
cians in the specialty, but unfortunately it often
has the drawback of cutting off the rest of the
world, including mathematicians in other special-
ties, from understanding the proof. We discussed
one possible resolution to this on p. xxivl Second,
it is often assumed that a complete formal proof
would require countless millions of symbols (Sec-
tion [1.1.3)). This might be true if the proof were
to be expressed directly in terms of the axioms of
logic and set theory, but it is usually not true if
we allow ourselves a hierarchy of definitions and
theorems to build upon, using a notation that
allows us to introduce new symbols, definitions,
and theorems in a precisely specified way.

Even in formal logic, formal proofs that are
considered complete still contain hidden or im-
plicit information. For example, a “proof” is
usually defined as a sequence of wifs["Y] each of

30A wff or well-formed formula is a mathematical ex-



which is an axiom or follows from a rule applied to
previous wifs in the sequence. The implicit part
of the proof is the algorithm by which a sequence
of symbols is verified to be a valid wff, given the
definition of a wff. The algorithm in this case is
rather simple, but for a computer to verify the
proof, it must have the algorithm built into its
verification programﬂ If one deals exclusively

pression (string of symbols) constructed according to some
precise rules. A formal mathematical system contains
(1) the rules for constructing syntactically correct wifs,
(2) a list of starting wifs called axioms, and (3) one or
more rules prescribing how to derive new wifs, called the-
orems, from the axioms or previously derived theorems.
An example of such a system is contained in Metamath’s
set theory database, which defines a formal system from
which all of standard mathematics can be derived. Sec-
tion [2.2.1] steps you through a complete example of a
formal system, and you may want to skim it now if you
are unfamiliar with the concept.

31Tt is possible, of course, to specify wif construction
syntax outside of the program itself with a suitable input
language (the Metamath language being an example), but
some proof-verification or theorem-proving programs lack
the ability extend wiff syntax in such a fashion.



with axioms and elementary wfifs, it is straight-
forward to implement such an algorithm. But as
more and more definitions are added to the the-
ory in order to make the expression of wifs more
compact, the algorithm becomes more and more
complicated. A computer program that imple-
ments the algorithm becomes larger and harder
to understand as each definition is introduced,
and thus more prone to bugs. The larger the
program, the more suspicious the mathematician
may be about the validity of its algorithms. This
is especially true because computer programs are
inherently hard to follow to begin with, and few
people enjoy verifying them manually in detail.
Metamath takes a different approach. Meta-
math’s “knowledge” is limited to the ability to
substitute variables for expressions, subject to
some simple constraints. Once the basic algo-
rithm of Metamath is assumed to be debugged,
and perhaps independently confirmed, it can be
trusted once and for all. The information that
Metamath needs to “understand” mathematics
is contained entirely in the body of knowledge



presented to Metamath. Any errors in reasoning
can only be errors in the axioms or definitions
contained in this body of knowledge. As a “con-
structive” language Metamath has no conditional
branches or loops like the ones that make com-
puter programs hard to decipher; instead, the
language can only build new sequences of symbols
from earlier sequences of symbols.

The simplicity of the rules that underlie Meta-
math not only makes Metamath easy to learn
but also gives Metamath a great deal of flexibil-
ity. For example, Metamath is not limited to
describing standard first-order logic; higher-order
logics and fragments of logic can be described
just as easily. Metamath gives you the freedom
to define whatever wiff notation you prefer; it
has no built-in conception of the syntax of a wif.
With suitable axioms and definitions, Metamath
can even describe and prove things about itself.
(John Harrison discusses the “reflection” princi-
ple involved in self-descriptive systems in [20)].)

The flexibility of Metamath requires that its
proofs specify a lot of detail, much more than in



an ordinary “formal” proof. For example, in an
ordinary formal proof, a single step consists of
displaying the wif that constitutes that step. In
order for a computer program to verify that the
step is acceptable, it first must verify that the
symbol sequence being displayed is an acceptable
wif. Most proof verifiers have at least basic wiff
syntax built into their programs. Metamath has
no hard-wired knowledge of what constitutes a
wif built into it; instead every wff must be explic-
itly constructed based on rules defining wffs that
are present in a database. Thus a single step
in an ordinary formal proof may be correspond
to many steps in a Metamath proof. Despite
the larger number of steps, though, this does
not mean that a Metamath proof must be sig-
nificantly larger than an ordinary formal proof.
The reason is that since we have constructed the
wif from scratch, we know what the wif is, so
there is no reason to display it. We only need to
refer to a sequence of statements that construct
it. In a sense, the display of the wff in an ordi-
nary formal proof is an implicit proof of its own



validity as a wff; Metamath just makes the proof
explicit. (Section 4.3 describes Metamath’s proof
notation.)

1.2 Computers and Mathe-
maticians

The computer is important, but not
to mathematics.

PauL Harmo$?

Pure mathematicians have traditionally been
indifferent to computers, even to the point of
disdain. Computer science itself is sometimes
considered to fall in the mundane realm of “ap-
plied” mathematics, perhaps essential for the real
world but intellectually unexciting to those who
seek the deepest truths in mathematics. Perhaps
a reason for this attitude towards computers is
that there is little or no computer software that

32As quoted in [1], p. 121



meets their needs, and there may be a general feel-
ing that such software could not even exist. On
the one hand, there are the practical computer
algebra systems, which can perform amazing sym-
bolic manipulations in algebra and calculus, yet
can’t prove the simplest existence theorem, if the
idea of a proof is present at all. On the other
hand, there are specialized automated theorem
provers that technically speaking may generate
correct proofs. But sometimes their specialized
input notation may be cryptic and their output
perceived to be long, inelegant, incomprehensible
proofs. The output may be viewed with suspi-
cion, since the program that generates it tends
to be very large, and its size increases the poten-
tial for bugs. Such a proof may be considered
trustworthy only if independently verified and
“understood” by a human, but no one wants to
waste their time on such a boring, unrewarding
chore.



1.2.1 Trusting the Computer

... I continue to find the quasi-empirical
interpretation of computer proofs to
be the more plausible.. .. Since not ev-
erything that claims to be a computer
proof can be accepted as valid, what
are the mathematical criteria for ac-
ceptable computer proofs?

THOMAS TYMOCZKO

In some cases, computers have been essential
tools for proving famous theorems. But if a proof
is so long and obscure that it can be verified
in a practical way only with a computer, it is
vaguely felt to be suspicious. For example, prov-
ing the famous four-color theorem (“a map needs
no more than four colors to prevent any two adja-
cent countries from having the same color”) can
presently only be done with the aid of a very
complex computer program which originally re-
quired 1200 hours of computer time. There has

33162], p. 245



been considerable debate about whether such a
proof can be trusted and whether such a proof is
“real” mathematics [57].

However, under normal circumstances even
a skeptical mathematician would a have a great
deal of confidence in the result of multiplying two
numbers on a pocket calculator, even though the
precise details of what goes on are hidden from its
user. Even the verification on a supercomputer
that a huge number is prime is trusted, especially
if there is independent verification; no one both-
ers to debate the philosophical significance of its
“proof,” even though the actual proof would be so
large that it would be completely impractical to
ever write it down on paper. It seems that if the
algorithm used by the computer is simple enough
to be readily understood, then the computer can
be trusted.

Metamath adopts this philosophy. The sim-
plicity of its language makes it easy to learn, and
because of its simplicity one can have essentially
absolute confidence that a proof is correct. All
axioms, rules, and definitions are available for



inspection at any time because they are defined
by the user; there are no hidden or built-in rules
that may be prone to subtle bugs. The basic al-
gorithm at the heart of Metamath is simple and
fixed, and it can be assumed to be bug-free and
robust with a degree of confidence approaching
certainty. (An independently written implemen-
tation of Metamath could pretty much eliminate
any residual doubt on the part of a skeptic.)

1.2.2 Trusting the Mathematician

There is no Algebraist nor Mathe-
matician so expert in his science, as
to place entire confidence in any truth
immediately upon his discovery of it,
or regard it an any thing, but a mere
probability. FEvery time he runs over
his proofs, his confidence encreases;
but still more by the approbation of
his friends; and is rais’d to its utmost
perfection by the universal assent and
applauses of the learned world.



Davip HumeE

Stanislaw Ulam estimates that math-
ematicians publish 200,000 theorems
every year. A number of these are
subsequently contradicted or otherwise
disallowed, others are thrown into doubt,
and most are ignored.

RICHARD DE MILLO ET. ALPY

Whether or not the computer can be trusted,
humans of course will occasionally err. Only
the most memorable proofs get independently
verified, and of these only a handful of truly
great ones achieve the status of being “known”
mathematical truths that are used without giving
a second thought to their correctness.

There are many famous examples of incorrect
theorems and proofs in mathematical literature.

34 A Treatise of Human Nature, as quoted in [14], p. 267
35[14], p. 269



e There have been thousands of purported
proofs of Fermat’s Last Theorem (“no in-
teger solutions exist to " + y™ = 2" for
n > 27), by amateurs, cranks, and well-
regarded mathematicians [50) p. 5]. Fermat
wrote a note in his copy of Bachet’s Dio-
phantus that he found “a truly marvelous
proof of this theorem but this margin is too
narrow to contain it” [29 p. 507]. A recent,
much publicized proof by Yoichi Miyaoka
was shown to be incorrect (Science News,
April 9, 1988, p. 230). The theorem was
finally proved by Andrew Wiles (Science
News, July 3, 1993, p. 5), but it initially
had some gaps and took over a year after
its announcement to be checked thoroughly
by experts. On Oct. 25, 1994, Wiles an-
nounced that the last gap found in his proof
had been filled in.

e In 1882, M. Pasch discovered that an axiom
was omitted from Euclid’s formulation of ge-
ometry; without it, the proofs of important



theorems of Euclid are not valid. Pasch’s
axiom states that a line that intersects one
side of a triangle must also intersect an-
other side, provided that it does not touch
any of the triangle’s vertices. The omission
of Pasch’s axiom went unnoticed for 2000
years [13], p. 160], in spite of (one presumes)
the thousands of students, instructors, and
mathematicians who studied Euclid.

e The first published proof of the famous
Schroder-Bernstein theorem in set theory
was incorrect [16, p. 148]. This theorem
states that if there exists a functionf from
set A onto set B and vice-versa, then sets
A and B can be put into one-to-one corre-
spondence. Although it sounds simple and
obvious, the standard proof is quite long
and complex.

36A set is any collection of objects. A function or
mapping is a rule that assigns to each element of one set
(called the function’s domain) an element from another
set.



e In the early 1900’s, Hilbert published a pur-
ported proof of the continuum hypothesis,
which was eventually established as unprov-
able by Cohen in 1963 [16, p. 166]. The
continuum hypothesis states that no infin-
ity (“transfinite cardinal number”) exists
whose size (or “cardinality”) is between the
size of the set of integers and the size of the
set of real numbers. This hypothesis origi-
nated with German mathematician Georg
Cantor in the late 1800’s, and his inability
to prove it is said to have contributed to
mental illness that afflicted him in his later
years.

e An incorrect proof of the four-color theo-
rem was published by Kempe in 1879 [I1],
p. 582[; it stood for 11 years before its flaw
was discovered. This theorem states that
any map can be colored using only four
colors, so that no two adjacent countries
have the same color. In 1976 the theorem
was finally proved by the famous computer-



assisted proof of Haken, Appel, and Koch
[57]. Or at least it seems that way. Mathe-
matician H. S. M. Coxeter has doubts [13],
p. 58]: “I have a feeling that is an untidy
kind of use of the computers, and the more
you correspond with Haken and Appel, the
more shaky you seem to be.”

e Many false “proofs” of the Poincaré con-
jecture have been proposed over the years.
This conjecture states that any object that
mathematically behaves like a three-dimensio
sphere is a three-dimensional sphere topo-
logically, regardless of how it is distorted.
In March 1986, mathematicians Colin Rourke
and Eduardo Reégo caused a stir in the
mathematical community by announcing
that they had found a proof; in November
of that year the proof was found to be false
[46, p. 218]. It was finally proved in 2003
by Grigory Perelman [58].

Many counterexamples to “theorems” in re-
cent mathematical literature related to Clifford al-



gebras have been found by Pertti Lounesto (who
passed away in 2002). See the web page http:
//mathforum.org/library/view/4933.html.

One of the purposes of Metamath is to allow
proofs to be expressed with absolute precision.
Developing a proof in the Metamath language
can be challenging, because Metamath will not
permit even the tiniest mistake. But once the
proof is created, its correctness can be trusted
immediately, without having to depend on the
process of peer review for confirmation.

1.3 The Use of Computers
in Mathematics

1.3.1 Computer Algebra Systems

For the most part, you will find that Metamath
is not a practical tool for manipulating numbers.
(Even proving that 2 + 2 = 4, if you start with
set theory, can be quite complex!) Several com-
mercial mathematics packages are quite good at


http://mathforum.org/library/view/4933.html
http://mathforum.org/library/view/4933.html

arithmetic, algebra, and calculus, and as practical
tools they are invaluable. But they have no no-
tion of proof, and cannot understand statements
starting with “there exists such and such...”.
Software packages such as Mathematica [66]
do not concern themselves with proofs but instead
work directly with known results. These packages
primarily emphasize heuristic rules such as the
substitution of equals for equals to achieve sim-
pler expressions or expressions in a different form.
Starting with a rich collection of built-in rules
and algorithms, users can add to the collection
by means of a powerful programming language.
However, results such as, say, the existence of
a certain abstract object without displaying the
actual object cannot be expressed (directly) in
their languages. The idea of a proof from a small
set of axioms is absent. Instead this software
simply assumes that each fact or rule you add to
the built-in collection of algorithms is valid. One
way to view the software is as a large collection
of axioms from which the software, with certain
goals, attempts to derive new theorems, for exam-



ple equating a complex expression with a simpler
equivalent. But the terms “theorem” and “proof,”
for example, are not even mentioned in the index
of the user’s manual for Mathematica. What is
also unsatisfactory from a philosophical point of
view is that there is no way to ensure the validity
of the results other than by trusting the writer
of each application module or tediously check-
ing each module by hand, similar to checking a
computer program for bugs’| While of course
extremely valuable in applied mathematics, com-
puter algebra systems tend to be of little interest
to the theoretical mathematician except as aids

37"Two examples illustrate why the knowledge database
of computer algebra systems should sometimes be re-
garded with a certain caution. If you ask Mathematica
(version 3.0) to Solve[x™n + y™n == z"n , n] it will re-
spond with {{n->-2}, {n->-1}, {n->1}, {n->2}}. In
other words, Mathematica seems to “know” that Fer-
mat’s Last Theorem is true! (At the time this version of
Mathematica was released this fact was unknown.) If you
ask Maple to solve(x~2 = 2°x) then simplify({"}), it
returns the solution set {2, 4}, apparently unaware that
0.7666647. . .is also a solution.



for exploring certain specific problems.

Because of possible bugs, trusting the output
of a computer algebra system for use as theorems
in a proof-verifier would defeat the latter’s goal
of rigor. On the other hand, a fact such that a
certain relatively large number is prime, while
easy for a computer algebra system to derive,
might have a long, tedious proof that could over-
whelm a proof-verifier. One approach for link-
ing computer algebra systems to a proof-verifier
while retaining the advantages of both is to add
a hypothesis to each such theorem indicating its
source. For example, a constant MAPLE could in-
dicate the theorem came from the Maple package,
and would mean “assuming Maple is consistent,
then...” This and many other topics concerning
the formalization of mathematics are discussed in
John Harrison’s very interesting PhD thesis [21],
available on the Web.



1.3.2 Automated Theorem Provers

A mathematical theory is “decidable” if a me-
chanical method or algorithm exists that is guar-
anteed to determine whether or not a particular
formula is a theorem. Among the few theories
that are decidable is elementary geometry, as was
shown by a classic result of logician Alfred Tarski
in 1948 [60] P¥ But most theories, including ele-
mentary arithmetic, are undecidable. This fact
contributes to keeping mathematics alive and
well, since mathematicians know that they will

38Tarski’s result actually applies to a subset of the ge-
ometry discussed in elementary textbooks. This subset
includes most of what would be considered elementary
geometry but it is not powerful enough to express, among
other things, the notions of the circumference and area
of a circle. Extending the theory in a way that includes
notions such as these makes the theory undecidable, as
was also shown by Tarski. Tarski’s algorithm is far too
inefficient to implement practically on a computer. A
practical algorithm for proving a smaller subset of geom-
etry theorems (those not involving concepts of “order” or
“continuity”) was discovered by Chinese mathematician
Wu Wen-tstin in 1977 [10].



never be replaced by computers (providing one
believes Roger Penrose’s argument that a com-
puter can never replace the brain [45]). In fact,
elementary geometry is often considered a “dead”
field for the simple reason that it is decidable.

On the other hand, the undecidability of a
theory does not mean that one cannot use a com-
puter to search for proofs, providing one is willing
to give up if a proof is not found after a reasonable
amount of time. The field of automated theorem
proving specializes in pursuing such computer
searches. Among the more successful results to
date are those based on an algorithm known as
Robinson’s resolution principle [49].

Automated theorem provers can be excellent
tools for those willing to learn how to use them.
But they are not widely used in mainstream pure
mathematics, even though they could probably
be useful in many areas. There are several rea-
sons for this. Probably most important, the main
goal in pure mathematics is to arrive at results
that are considered to be deep or important; prov-
ing them is essential but secondary. Usually, an



automated theorem prover cannot assist in this
main goal, and by the time the main goal is
achieved, the mathematician may have already
figured out the proof as a by-product. There
is also a notational problem. Mathematicians
are used to using very compact syntax where
one or two symbols (heavily dependent on con-
text) can represent very complex concepts; this
is part of the hierarchy they have built up to
tackle difficult problems. A theorem prover on
the other hand might require that a theorem
be expressed in “first-order logic,” which is the
logic on which most of mathematics is ultimately
based but which is not ordinarily used directly
because expressions can become very long. Some
automated theorem provers are experimental pro-
grams, limited in their use to very specialized
areas, and the goal of many is simply research
into the nature of automated theorem proving
itself. Finally, much research remains to be done
to enable them to prove very deep theorems. One
significant recent result was a computer proof by
Larry Wos and colleagues that every Robbins



algebra is a Boolean algebra (New York Times,
Dec. 10, 1996) 7

How does Metamath relate to automated the-
orem provers? A theorem prover is primary con-
cerned with one theorem at a time (perhaps tap-
ping into a small database of known theorems)
whereas Metamath is more like a theorem archiv-
ing system, storing both the theorem and its

39Tn 1933, E. V. Huntington presented the following
axiom system for Boolean algebra with a unary operation
n and a binary operation +:

r+yYy=y+x
(T+ty)+z=2+(y+2)
n(n(z) +y) +n(n(z) +n(y)) =

Herbert Robbins, a student of Huntington, conjectured
that the last equation can be replaced with a simpler one:

n(n(z +y) +n(z+n(y)) ==

Robbins and Huntington could not find a proof. The
problem was later studied unsuccessfully by Tarski and
his students, and it remained an unsolved problem until a
computer found the proof in 1996. For more information
on the Robbins algebra problem see [67].



proof in a database for access and verification.
Metamath is one answer to “what do you do with
the output of a theorem prover?” and could be
viewed as the next step in the process. Auto-
mated theorem provers could be useful tools for
helping develop its database, although as of this
writing there are no software translation tools
that do this. Note that very long, automatically
generated proofs can make your database fat and
ugly and cause Metamath’s proof verification to
take a long time to run. Unless you have a partic-
ularly good program that generates very concise
proofs, it might be best to consider the use of au-
tomatically generated proofs as a quick-and-dirty
approach, to be manually rewritten at some later
date.

If you are interested in automatic theorem
provers, three well-regarded programs are Isabelld™

4Ohttp://www.cl.cam.ac.uk/Research/HVG/
Isabelle
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Ho1[f] and oTTER™]

OTTER is also available on a disk included
with the book Automated Reasoning: Introduc-
tion and Applications [67]. This program not
only is able to generate relatively efficient proofs,
it can even be instructed to search for shorter
proofs. The effective use of OTTER does require a
certain amount of experience, skill, and patience.
The axiom system used in the set.mm set the-
ory database can be expressed to OTTER using
a method described in [34][F] When successful,
this method tends to generate short and clever
proofs, but my experiments with it indicate that
the method will find proofs within a reasonable
time only for relatively easy theorems. It is still
fun to experiment with.

Reference [7] surveys a number of approaches

“Thttp://cs.anu.edu.au/student/comp8033/hol.
html

*“http://wwuw.cs.unm.edu/~mccune/otter/

43To use those axioms with OTTER, they must be re-
stated in a way that eliminates the need for “dummy

variables.” See the Comment on p.
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people have explored in the field of automated
theorem proving.

1.3.3 Proof Verifiers

A proof verifier is a program that doesn’t gen-
erate proofs but instead verifies proofs that you
give it. Many proof verifiers have limited built-in
automated proof capabilities, such as figuring
out simple logical inferences (while still being
guided by a person who provides the overall
proof). Metamath has no built-in automated
proof capability other than the limited capability
of its Proof Assistant.

Proof-verification languages are not used as
frequently as they might be. Pure mathemati-
cians are more concerned with producing new
results, and such detail and rigor would interfere
with that goal. The use of computers in pure
mathematics is primarily focused on automated
theorem provers (not verifiers), again with the
ultimate goal of aiding the creation of new math-
ematics. Automated theorem provers are usually



concerned with attacking one theorem at time
rather than making a large, organized database
easily available to the user. Metamath is one way
to help close this gap.

Besides Metamath, there are several other
on-going projects with the goal of formalizing
mathematics into computer-verifiable databases.
One such project is QED, and several mathemati-
cians are currently working to agree on the re-
quirements for a universal language. Information
on this project is available at http://www-unix.
mcs.anl.gov/qed. One specific proof-verification
language is Mizar, which can display its proofs
in the informal language that mathematicians
are accustomed to. Information on the Mizar
language is available http://mizar.org.

Other higher-level proof verification languages
are LCF and HOL; a good overview of these and
others is given in [20]. All of these languages are
fundamentally different from Metamath in that
much of the mathematical foundational knowl-
edge is embedded in the underlying proof-verificatic
program, rather than placed directly in the databas
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that is being verified. For the working mathe-
matician these languages are often more practical
to use than Metamath, but they can have a steep
learning curve for those without a mathemati-
cal background. For example, one usually must
have a fair understanding of mathematical logic
in order to follow their proofs.

For the working mathematician, Mizar is an
excellent tool for rigorously documenting proofs.
Mizar typesets its proofs in the informal English
used by mathematicians (and, while fine for them,
are just as inscrutable by laypersons!). A price
paid for Mizar is a relatively steep learning curve
of a couple of weeks. Several mathematicians
are actively formalizing different areas of math-
ematics using Mizar and publishing the proofs
in a dedicated journal. Unfortunately the task
of formalizing mathematics is still looked down
upon to a certain extent since it doesn’t involve
the creation of new mathematics.

To summarize our discussions of computers
and mathematics, computer algebra systems can
be viewed as theorem generators focusing on



a narrow realm of mathematics (numbers and
their properties), automated theorem provers as
proof generators for specific theorems in a much
broader realm covered by a built-in formal sys-
tem such as first-order logic, proof verifiers in
general as proof documentors usually restricted
to first-order logic, and Metamath in particular
as a proof documentor whose realm is essentially
unlimited.

1.4 Mathematics and Meta-
math

1.4.1 Standard Mathematics

There are a number of ways that Metamath can
be used with standard mathematics. The most
satisfying way philosophically is the start at the
very beginning, and develop the desired mathe-
matics from the axioms of logic and set theory.
This is the approach taken in the set.mm module
provided with the Metamath software. Among



other things, this module builds up to the axioms
of real and complex numbers (see Section [3.7),
and a standard development of analysis, for ex-
ample, could start at that point, using it as a
basis. Besides this philosophical advantage, there
are practical advantages to having all of the tools
of set theory available in the supporting infras-
tructure.

On the other hand, you may wish to start
with the standard axioms of a mathematical the-
ory without going through the set theoretical
proofs of those axioms. You will need mathe-
matical logic to make inferences, but if you wish
you can simply introduce theorems of logic as
“axioms” wherever you need them, with the im-
plicit assumption that in principle they can be
proved, if they are obvious to you. If you choose
this approach, you will probably want to review
the notation used in set.mm so that your own
notation will be consistent with it.



1.4.2 Other Formal Systems

Unlike some programs, Metamath is not lim-
ited to any specific area of mathematics, nor
committed to any particular mathematical phi-
losophy such as classical logic versus intuition-
ism, nor limited, say, to expressions in first-order
logic. Although the database set.mm included
with the Metamath software package describes
standard logic and set theory, Metamath is ac-
tually a general-purpose language for describing
a wide variety of formal systems. Non-standard
systems such as modal logic, intuitionist logic,
higher-order logic, quantum logic, and category
theory can all be described with the Metamath
language. You define the symbols you prefer and
tell Metamath the axioms and rules you want to
start from, and Metamath will verify any infer-
ences you make from those axioms and rules. A
simple example of a non-standard formal system
is Hofstadter’s MIU system, whose Metamath
description is presented in Appendix [D}

Since the days of David Hilbert, mathemati-



cians have been concerned with the fact that
the metalanguage used to describe mathemat-
ics may be stronger than the mathematics being
described. Metamath’s underlying finitary, con-
structive nature provides a good philosophical
basis for studying even the weakest logics.
Actually, the usual treatment of many non-
standard formal systems uses model theory or
proof theory to describe these systems; these the-
ories, in turn, are based on standard set theory.
In other words, a non-standard formal system
is defined as a set with certain properties, and
standard set theory is used to derive additional
properties of this set. The standard set the-
ory database provided with Metamath can be
used for this purpose, and the development of a
special axiom system for the non-standard for-
mal system becomes unnecessary. The model-
or proof-theoretic approach often allows you to
prove much deeper results with less effort.



1.4.3 Metamath and Its Philoso-
phy

Closely related to Metamath is a philosophy or
way of looking at mathematics. This philosophy
is related to the formalist philosophy of Hilbert
and his followers [27, pp. 1203-1208] [4, p. 6]. In
this philosophy, mathematics is viewed as noth-
ing more than a set of rules that manipulate
symbols, together with the consequences of those
rules. While the mathematics being described
may be complex, the rules used to describe it (the
“metamathematics”) should be as simple as pos-
sible. In particular, proofs should be restricted
to dealing with concrete objects (the symbols we
write on paper rather than the abstract concepts
they represent) in a constructive manner; these
are called “finitary” proofs [54, pp. 2-3].
Whether or not you find Metamath interest-
ing or useful will in part depend on the appeal
you find in its philosophy, and this appeal will
probably depend on your particular goals with
respect to mathematics. For example, if you



are a pure mathematician at the forefront of dis-
covering new mathematical knowledge, you will
probably find that the rigid formality of Meta-
math stifles your creativity. On the other hand,
we would argue that once this knowledge is dis-
covered, there are advantages to documenting it
in a standard format that will make it accessi-
ble to others. Sixty years from now, your field
may be dormant, and as Davis and Hersh put
it, your “writings would become less translatable
than those of the Maya” [13, p. 37].

1.4.4 A History of the Approach
Behind Metamath

Probably the one work that has had the most
motivating influence on Metamath is Whitehead
and Russell’s monumental Principia Mathemat-
ica [65], whose aim was to deduce all of mathe-
matics from a small number of primitive ideas,
in a very explicit way that in principle anyone
could understand and follow. While this work



was tremendously influential in its time, from a
modern perspective it suffers from several draw-
backs. Both its notation and its underlying ax-
ioms are now considered dated and are no longer
used. From our point of view, its development is
not really as accessible as we would like to see;
for practical reasons, proofs become more and
more sketchy as its mathematics progresses, and
working them out in fine detail requires a degree
of mathematical skill and patience that many
people don’t have. There are numerous small
errors, which is understandable given the tedious,
technical nature of the proofs and the lack of a
computer to verify the details. However, even
today Principia Mathematica stands out as the
work closest in spirit to Metamath. It remains a
mind-boggling work, and one can’t help but be
amazed at seeing “1 + 1 = 2” finally appear on
page 83 of Volume II (Theorem *110.643).

The origin of the proof notation used by Meta-
math dates back to the 1950’s, when the logician
C. A. Meredith expressed his proofs in a compact
notation called “condensed detachment” [23] [26]



[38] [47]. This notation allows proofs to be com-
municated unambiguously by merely referencing
the axiom, rule, or theorem used at each step,
without explicitly indicating the substitutions
that have to be made to the variables in that
axiom, rule, or theorem. Ordinarily, condensed
detachment is more or less limited to proposi-
tional calculus. The concept has been extended
to first-order logic in [34], making it is easy to
write a small computer program to verify proofs
of simple first-order logic theorems.

A key concept behind the notation of con-
densed detachment is called “unification,” which
is an algorithm for determining what substitu-
tions to variables have to be made to make two
expressions match each other. Unification was
first precisely defined by the logician J. A. Robin-
son, who used it in the development of a powerful
theorem-proving technique called the “resolution
principle” [49]. Metamath does not make use of
the resolution principle, which is intended for sys-
tems of first-order logic. Metamath’s use is not
restricted to first-order logic, and as we have men-



tioned it does not automatically discover proofs.
However, unification is a key idea behind Meta-
math’s proof notation, and Metamath makes use
of a very simple version of it (Section [4.3.1]).

1.4.5 Metamath and First-Order
Logic

First-order logic is the supporting structure for
standard mathematics. On top of it is set theory,
which contains the axioms from which virtually
all of mathematics can be derived—a remarkable
fact ]

One of the things that makes Metamath more
practical for first-order theories is a set of ax-
ioms for first-order logic designed specifically

44 An exception seems to be category theory. There are
several schools of thought on whether category theory is
derivable from set theory. At a minimum, it appears that
an additional axiom is needed that asserts the existence of
an “inaccessible cardinal” (a type of infinity so large that
standard set theory can’t prove or deny that it exists).
For more information, see [22 pp. 328-331] and [6].



with Metamath’s approach in mind. These are
included in a standard database called set.mm
which comes with the Metamath software. See
Chapter [3| for a detailed description; the axioms
are shown in Section [3.3] While logically equiva-
lent to standard axiom systems, our axiom sys-
tem breaks up the standard axioms into smaller
pieces such that from them, you can directly de-
rive what in other systems can only be derived
as higher-level “metatheorems.” In other words,
it is more powerful than the standard axioms
from a metalogical point of view. A rigorous
justification for this system and its “metalogical
completeness” is found in [34]. The system is
closely related to a system developed by Monk
and Tarski in 1965 [39).

For example, the formula Jzx = y (given
y, there exists some x equal to it) is a theorem
of logic[| whether or not x and y are distinct

45Specifically, it is a theorem of those systems of logic
that assume non-empty domains. It is not a theorem of
more general systems that include the empty domain, in
which nothing exists, period! Such systems are called



variables. In many systems of logic, we would
have to prove two theorems to arrive at this
result. First we would prove “drx = z,” then
we would separately prove “drx = y, where z
and y are distinct variables.” We would then
combine these two special cases “outside of the
system” (i.e. in our heads) to be able to claim,
“Jrx = vy, regardless of whether x and y are
distinct.” In other words, in the combination of
the two special cases is a metatheorem. In the
system of logic used in Metamath’s set theory
database, the axioms of logic are broken down
into small pieces that allow them to reassembled
in such a way that theorems such as these can
be proved directly.

“free logics.” For a discussion of these systems, see [31].
Since our use for logic is as a basis for set theory, which
has a non-empty domain, it is more convenient (and more
traditional) to use a less general system. An interesting
curiosity is that, using a free logic as a basis for Zermelo-
Fraenkel set theory (with the redundant Axiom of the
Null Set omitted), we cannot even prove the existence of
a single set without assuming the axiom of infinity!



Breaking down the axioms in this way makes
them look peculiar and not very intuitive at first,
but rest assured that they are correct and com-
plete. Their correctness is ensured because they
are theorem schemes of standard first-order logic
(which you can easily verify if you are a logician).
Their completeness follows from the fact that
we explicitly derive the standard axioms of first-
order logic as theorems. Deriving the standard
axioms is somewhat tricky, but once we're there,
we have at our disposal a system that is less awk-
ward to work with in formal proofs. In technical
terms that logicians understand, we eliminate the
cumbersome concepts of “free variable,” “bound
variable,” and “proper substitution” as primitive
notions. These concepts are present in our system
but are defined in terms of concepts expressed by
the axioms and can be eliminated in principle. In
standard systems, these concepts are really like
additional, implicit axioms that are somewhat
complex and cannot be eliminated.

The traditional approach to logic, wherein
free variables and proper substitution is defined,



is also possible to do directly in the Metamath
language. However, the notation tends to be-
come awkward, and there are disadvantages: for
example, extending the definition of a wif with a
definition is awkward, because the free variable
and proper substitution concepts have to have
their definitions also extended. Our choice of ax-
ioms for set.mm is to a certain extent a matter of
style, in an attempt to achieve overall simplicity,
but you should also be aware that the traditional
approach is possible as well if you should choose
it.






Chapter 2

Using the
Metamath Program

2.1 Installation

The way that you install Metamath on your com-
puter system will vary for different computers.
Current instructions are provided with the Meta-
math program download at http://metamath.
org. In general, the installation is simple. There
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is one file containing the Metamath program
itself. This file is usually called metamath or
metamath.zzz where zzx is the convention (such
as exe) for an executable program on your oper-
ating system. There are several additional files
containing samples of the Metamath language,
all ending with .mm. The file set.mm contains
logic and set theory and can be used as a starting
point for other areas of mathematics.

You will also need a text editor capable of
editing plain ASCI]E] text in order to prepare your
input files. Most computers have this capability
built in. Note that plain text is not necessarily
the default for some word processing programs,
especially if they can handle different fonts; for
example, with Microsoft Word, you must save the
file in the format “Text Only With Line Breaks”
to get a plain text file[]

! American Standard for Coded Information Inter-
change

2Tt is recommended that all lines in a Metamath source
file be 79 characters or less in length for compatibility
among different computer terminals. When creating a



On some computer systems, Metamath does
not have the capability to print its output di-
rectly; instead, you send its output to a file (using
the open commands described later). The way
you print this output file depends on your com-
puter. Some computers have a print command,
whereas with others, you may have to read the
file into an editor and print it from there.

If you want to print your Metamath source
files with typeset formulas containing standard
mathematical symbols, you will need the IXTEX
typesetting program, which is widely and freely
available for most operating systems. It runs
natively on Unix and Linux, and can be installed
on Windows as part of the free Cygwin package
(http://cygwin.com).

You can also produce HTMI| web pages. The
help html command in the Metamath program

source file on an editor such as Word, select a monospaced
font such as Courier or Monaco to make this easier to
achieve. Better yet, just use a plain text editor such as
Notepad.

3HyperText Markup Language
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will assist you with this feature.

2.2 Your First Formal Sys-
tem

2.2.1 From Nothing to Zero

To give you a feel for what the Metamath lan-
guage looks like, we will take a look at a very
simple example from formal number theory. This
example is taken from Mendelson [36], p. 123] |7_r]
We will look at a small subset of this theory,
namely that part needed for the first number
theory theorem proved in [36].

First we will look at a standard formal proof
for the example we have picked, then we will
look at the Metamath version. If you have never
been exposed to formal proofs, the notation may
seem to be such overkill to express such simple

4To keep the example simple, we have changed the
formalism slightly, and what we call axioms are strictly
speaking theorems in [36].



notions that you may wonder if you are missing
something. You aren’t. The concepts involved
are in fact very simple, and a detailed break-
down in this fashion is necessary to express the
proof in a way that can be verified mechanically.
And as you will see, Metamath breaks the proof
down into even finer pieces so that the mechan-
ical verification process can be about as simple
as possible.

Before we can introduce the axioms of the
theory, we must define the syntax rules for form-
ing legal expressions (combinations of symbols)
with which those axioms can be used. The num-
ber 0 is a term; and if ¢t and r are terms, so is
(t+7). Here, t and r are “metavariables” ranging
over terms; they themselves do not appear as
symbols in an actual term. Some examples of
actual terms are (04 0) and ((0+0) +0). (Note
that our theory describes only the number zero
and sums of zeroes. Of course, not much can
be done with such a trivial theory, but remem-
ber that we have picked a very small subset of
complete number theory for our example. The



important thing for you to focus on is our defini-
tions that describe how symbols are combined to
form valid expressions, and not on the content
or meaning of those expressions.) If ¢t and r are
terms, an expression of the form ¢t = r is a wif
(well-formed formula); and if P and @ are wifs,
so is (P — @) (which means “P implies Q" or
“if P then @”). Here P then ) are metavariables
ranging over wffs. Examples of actual wifs are
0=0,(0+0)=0,(0=0—=(0+0)=0),
and (0=0—(0=0—0=(0+0))). (Our
notation makes use of more parentheses than are
customary, but the elimination of ambiguity this
way simplifies our example by avoiding the need
to define operator precedence.)

The axioms of our theory are all wifs of the
following form, where ¢, r, and s are any terms:

(A1) (t=r—>(t=s—>r=s))
(A2) (t+0)=t

Note that there are an infinite number of ax-
ioms since there are an infinite number of possible



terms. Al and A2 are properly called “axiom
schemes,” but we will refer to them as “axioms”
for brevity.

An axiom is a theorem; and if P and (P —
Q) are theorems (where P and @) are wffs), then
() is also a theorem. The second part of this
definition is called the modus ponens (MP) rule
of inference. It allows us to obtain new theorems
from old ones.

The proof of a theorem is a sequence of one
or more theorems, each of which is either an
axiom or the result of modus ponens applied to
two previous theorems in the sequence, and the
last of which is the theorem being proved.

The theorem we will prove for our example
is very simple: ¢ = t. The proof of our theorem
follows. Study it carefully until you feel sure you
understand it.



1. (t+0)=t (by a
2. (t+0)=t (by a
3. (t+0)=t— ((t+0)=t—t=t)) (bya
4. (t+0)=t—t=1) (by N

steps
5. t=t (by N

steps

(You may wonder why step 1 is repeated twice.
This is not necessary in the formal language we
have defined, but in Metamath’s “reverse Polish
notation” for proofs, a previous step can be re-
ferred to only once. The repetition of step 1 here
will enable you to see more clearly the correspon-
dence of this proof with the Metamath version
on p.[126])

Our theorem is more properly called a “theo-
rem scheme,” for it represents an infinite number
of theorems, one for each possible term ¢t. Two
examples of actual theorems would be 0 = 0 and
(04+0) = (04 0). Rarely do we prove actual
theorems, since by proving schemes we can prove
an infinite number of theorems in one fell swoop.



Similarly, our proof should really be called a
“proof scheme.” To obtain an actual proof, pick
an actual term to use in place of ¢, and substitute
it for ¢t throughout the proof.

Let’s discuss what we have done here. The
axioms of our theory, A1l and A2, are trivial and
obvious. Everyone knows that adding zero to
something doesn’t change it, and also that if two
things are equal to a third, then they are equal
to each other. In fact, stating the trivial and
obvious is a goal to strive for in any axiomatic
system. From trivial and obvious truths that
everyone agrees upon, we can prove results that
are not so obvious yet have absolute faith in them.
If we trust the axioms and the rules, we must, by
definition, trust the consequences of those axioms
and rules, if logic is to mean anything at all.

Our rule of inference, modus ponens, is also
pretty obvious once you understand what it means.
If we prove a fact P, and we also prove that P im-
plies ), then @) necessarily follows as a new fact.
The rule provides us with a means for obtaining
new facts (i.e. theorems) from old ones.



The theorem that we have proved, t = ¢, is so
fundamental that you may wonder why it isn’t
one of the axioms. In some axiom systems of
arithmetic, it s an axiom. The choice of axioms
in a theory is to some extent arbitrary and even
an art form, constrained only by the requirement
that any two equivalent axiom systems be able to
derive each other as theorems. We could imagine
that the inventor of our axiom system originally
included t =t as an axiom, then discovered that
it could be derived as a theorem from the other
axioms. Because of this, it was not necessary to
keep it as an axiom. By eliminating it, the final
set of axioms became that much simpler.

Unless you have worked with formal proofs
before, it probably wasn’t apparent to you that
t =t could be derived from our two axioms until
you saw the proof. While you certainly believe
that ¢ = t is true, you might not be able to
convince an imaginary skeptic who believes only
in our two axioms until you produce the proof.
Formal proofs such as this are hard to come up
with when you first start working with them,



but after you get used to them they can become
interesting and fun. Once you understand the
idea behind formal proofs you will have grasped
the fundamental principle that underlies all of
mathematics. As the mathematics becomes more
sophisticated, its proofs become more challenging,
but ultimately they all can be broken down into
individual steps as simple as the ones in our proof
above.

Mendelson’s book, from which our example
was taken, contains a number of detailed formal
proofs such as these, and you may be interested
in looking it up. The book is intended for math-
ematicians, however, and most of it is rather
advanced. Popular literature describing formal
proofs include [51), p. 296] and [24, pp. 204-230].

2.2.2 Converting It to Metamath

Formal proofs such as the one in our example
break down logical reasoning into small, precise
steps that leave little doubt that the results fol-
low from the axioms. You might think that this



would be the finest breakdown we can achieve
in mathematics. However, there is more to the
proof than meets the eye. Although our axioms
were rather simple, a lot of verbiage was needed
before we could even state them: we needed to de-
fine “term,” “wiff,” and so on. In addition, there
are a number of implied rules that we haven’t
even mentioned. For example, how do we know
that step 3 of our proof follows from axiom A1?
There is some hidden reasoning involved in de-
termining this. Axiom Al has two occurrences
of the letter t. One of the implied rules states
that whatever we substitute for ¢ must be a legal
termE] The expression t 4 0 is pretty obviously a
legal term whenever ¢ is, but suppose we wanted
to substitute a huge term with thousands of sym-
bols? Certainly a lot of work would be involved
in determining that it really is a term, but in
ordinary formal proofs all of this work would be
considered a single “step.”

5Some authors make this implied rule explicit by stat-
ing, “only expressions of the above form are terms,” after
defining “term.”



To express our axiom system in the Meta-
math language, we must describe this auxiliary
information in addition to the axioms themselves.
Metamath does not know what a “term” or a
“wif” is. In Metamath, the specification of the
ways in which we can combine symbols to obtain
terms and wifs are like little axioms in themselves.
These auxiliary axioms are expressed in the same
notation as the “real” axioms, and Metamath
does not distinguish between the two. The dis-
tinction is made by you, i.e. by the way in which
you interpret the notation you have chosen to
express these two kinds of axioms.

The Metamath language breaks down math-
ematical proofs into tiny pieces, much more so
than in ordinary formal proofs. If a single step in-
volves the substitution of a complex term for one
of its variables, Metamath must see this single
step broken down into many small steps. This
fine-grained breakdown is what gives Metamath
generality and flexibility as it lets it not be lim-
ited to any particular mathematical notation.

Metamath’s proof notation is not, in itself,



intended to be read by humans but rather is in
a compact format intended for a machine. The
Metamath program will convert this notation
to a form you can understand, using the show
proof command. You can tell the program what
level of detail of the proof you want to look at.
You may want to look at just the logical inference
steps that correspond to ordinary formal proof
steps, or you may want to see the fine-grained
steps that prove that an expression is a term.
Here, without further ado, is our example
converted to the Metamath language:

$( Declare the constant symbols we
will use $)

$c 0 + = -> () term wff |- $.
$( Declare the metavariables we will
use $)

$v t r s P Q $.
$( Specify properties of the
metavariables $)
tt $f term t $.
tr $f term r $.
ts $f term s $.
wp $f wff P $.
wq $f wff Q $.



$( Define "term" and "wff" $)
tze $a term 0 $.
tpl $a term ( t + r ) §.
weq $a wff t = r §.
wim $a wff (P -> Q ) $.
$( State the axioms $)
al $a |- (Ct =1 -> (t =18 ->
r=1s))8$.
a2 $a |- (t +0) =1t $.
$( Define the modus ponens
inference rule $)
${
min $e |- P $.
maj $e |- CP ->Q ) $.
mp $a |- Q $.

$}
$( Prove a theorem $)
thl $p |- t = t $=

$( Here is its proof: $)
tt tze tpl tt weq tt tt weq tt
a2 tt tze tpl
tt weq tt tze tpl tt weq tt tt
weq wim tt a2
tt tze tpl tt tt al mp mp
$.

A “database” is a set of one or more ASCII



source files. Here’s a brief description of this
Metamath database (which consists of this single
source file), so that you can understand in general
terms what is going on. To understand the source
file in detail, you should read Chapter [4

The database is a sequence of “tokens,” which
are normally separated by spaces or carriage re-
turns. The only tokens that are built into the
Metamath language are those beginning with $.
These tokens are called “keywords.” All other
tokens are user-defined, and their names are ar-
bitrary.

As you might have guessed, the Metamath
token $( starts a comment and $) ends a com-
ment.

The Metamath tokens $c, $v, $e, $f, $a, and
$p specify “statements” that end with $. .

The Metamath tokens $c and $v each declare
a list of user-defined tokens, called “math sym-
bols,” that the database will reference later on.
All of the math symbols they define you have
seen earlier except the turnstile symbol |- (),
which is commonly used by logicians to mean “a



proof exists for.” For us the turnstile is just a
convenient symbol that distinguishes expressions
that are axioms or theorems from expressions
that are terms or wifs.

The $c statement declares “constants” and
the $v statement declares “variables” (or more
precisely, metavariables). A variable may be sub-
stituted with sequences of math symbols whereas
a constant may not be substituted with anything.

It may seem redundant to require both $c
and $v statements (since any math symbol not
specified with a $c statement could be presumed
to be a variable), but this provides for better
error checking and also allows math symbols to
be redeclared (Section [4.2.8)).

The token $f specifies a statement called a
“variable-type hypothesis” (also called a “floating
hypothesis”) and $e specifies a “logical hypothe-
sis” (also called an “essential hypothesis”). The
token $a specifies an “axiomatic assertion,” and
$p specifies a “provable assertion.” To the left
of each occurrence of these four tokens is a “la-
bel” that identifies the hypothesis or assertion for



later reference. For example, the label of the first
axiomatic assertion is tze. A $f statement must
contain exactly two math symbols, a constant
followed by a variable. The $e, $a, and $p state-
ments each start with a constant followed by, in
general, an arbitrary sequence of math symbols.

Associated with each assertion is a set of hy-
potheses that must be satisfied in order for the as-
sertion to be used in a proof. These are called the
“mandatory hypotheses” of the assertion. Among
those hypotheses whose “scope” (described be-
low) includes the assertion, $e hypotheses are
always mandatory and $f hypotheses are manda-
tory when they share their variable with the
assertion or its $e hypotheses. The exact rules
for determining which hypotheses are mandatory
are described in detail in Sections [£.2.7 and [4.2.8
For example, the mandatory hypotheses of asser-
tion tpl are tt and tr, whereas assertion tze
has no mandatory hypotheses because it contains
no variables and has no $e hypothesis. Meta-
math’s show statement command, described in
the next section, will show you a statement’s




mandatory hypotheses.

Sometimes we need to make a hypothesis rel-
evant to only certain assertions. The set of state-
ments to which a hypothesis is relevant is called
its “scope.” The Metamath brackets, ${ and $},
define a “block” that delimits the scope of any
hypothesis contained between them. The asser-
tion mp has mandatory hypotheses wp, wq, min,
and maj. The only mandatory hypothesis of thi,
on the other hand, is tt, since thl occurs outside
of the block containing min and maj.

Note that ${ and $} do not affect the scope
of assertions ($a and $p). Assertions are always
available to be referenced by any later proof in
the source file.

Each provable assertion ($p statement) has
two parts. The first part is the assertion itself,
which is a sequence of math symbol tokens placed
between the $p token and a $= token. The second
part is a “proof,” which is a list of label tokens
placed between the $= token and the $. token



that ends the statement[f| The proof acts as a
series of instructions to the Metamath program,
telling it how to build up the sequence of math
symbols contained in assertion part of the $p
statement, making use of the hypotheses of the
$p statement and previous assertions. The con-
struction takes place according to precise rules.
If the list of labels in the proof causes these rules
to be violated, or if the final sequence that re-
sults does not match the assertion, the Metamath
program will notify you with an error message.
If you are familiar with reverse Polish nota-
tion (RPN), which is sometimes used on pocket
calculators, here in a nutshell is how a proof
works. Each hypothesis label in the proof is
pushed onto the RPN stack as it is encountered.
Each assertion label pops off the stack as many

If you've looked at the set.mm database, you may
have noticed another notation used for proofs. The other
notation is called “compressed.” It reduces the amount
of space needed to store a proof in the database and is
described in Appendix [B]l In the example above, we use
“normal” notation.



entries as the referenced assertion has mandatory
hypotheses. Variable substitutions are computed
which, when made to the referenced assertion’s
mandatory hypotheses, cause these hypotheses
to match the stack entries. These same substi-
tutions are then made to the variables in the
referenced assertion itself, which is then pushed
onto the stack. At the end of the proof, there
should be one stack entry, namely the assertion
being proved. This process is explained in detail
in Section [£.3]

Metamath’s proof notation is not very read-
able for humans, but it allows the proof to be
stored compactly in a file. The Metamath pro-
gram has proof display features that let you see
what’s going on in a more readable way, as you
will see in the next section.

The rules used in verifying a proof are not
based on any built-in syntax of the symbol se-
quence in an assertion nor on any built-in mean-
ings attached to specific symbol names. They
are based strictly on symbol matching: constants
must match themselves, and variables may be



replaced with anything that allows a match to
occur. For example, instead of term, 0, and |-
we could have just as well used yellow, zero,
and provable, as long as we did so consistently
throughout the database. Also, we could have
used is provable (two tokens) instead of |-
(one token) throughout the database. In each of
these cases, the proof would be exactly the same.
The independence of proofs and notation means
that you have a lot of flexibility to change the
notation you use without having to change any
proofs.

2.3 A Trial Run

Now you are ready to try out the Metamath
program.

On all computer systems, Metamath has a
standard “command line interface” (CLI) that
allows you to interact with it. You supply com-
mands to the CLI by typing them on the key-
board and pressing your keyboard’s return key



after each line you enter. The CLI is designed to
be easy to use and has built-in help features.

The first thing you should do is to use a text
editor to create a file called demo0.mm and type
into it the Metamath source shown on p. [108]
Actually, this file is included with your Metamath
software package, so check that first. If you type
it in, make sure that you save it in the form of
“plain AscII text with line breaks.” Most word
processors will have this feature.

Next you must run the Metamath program.
Depending on your computer system and how
Metamath is installed, this could range from
clicking the mouse on the Metamath icon to typ-
ing run metamath to typing simply metamath.
(Metamath’s help invoke command describes
alternate ways of invoking the Metamath pro-
gram.)

When you first enter Metamath, it will be at
the CLI, waiting for your input. You will see the
following on your screen:

Metamath - Version 0.07.30 8-Feb-2007
Type HELP for help, EXIT to exit.



MM >

The MM> prompt means that Metamath is waiting
for a command. (The help message line suggests
that commands should be typed in upper case,
but actually command keywords are not case
sensitive. We will use lower case in our examples.)

The first thing that you need to do is to read
in your database{|

MM> read demoO.mm

Remember to press the return key after entering
this command. If you omit the file name, Meta-
math will prompt you for one. The syntax for
specifying a Macintosh file name path is given in
a footnote on p. [334

If there are any syntax errors in the database,
Metamath will let you know when it reads in
the file. The one thing that Metamath does not

If a directory path is needed on Unix, you should
enclose the path/file name in quotes to prevent Metamath
from thinking that the / in the path name is a command
qualifier, e.g., read "db/set.mm". Quotes are optional
when there is no ambiguity.



check when reading in a database is that all proofs
are correct, because this would slow it down too
much. It is a good idea to periodically verify the
proofs in a database you are making changes to.
To do this, use the following command (and do
it for your demoO.mm file now). Note that the *
is a “wild card” meaning all proofs in the file.

MM> verify proof x*

Metamath will report any proofs that are incor-
rect.

It is often useful to save the information that
the Metamath program displays on the screen.
You can save everything that happens on the
screen by opening a log file. You may want to
do this before you read in a database so that you
can examine any errors later on. To open a log
file, type

MM> open log abc.log

This will open a file called abc.log, and every-
thing that appears on the screen from this point
on will be stored in this file. The name of the
log file is arbitrary. To close the log file, type



MM> close 1log

Several commands let you examine what’s in-
side of your database. Section[3.§has an overview
of some useful ones. The show labels command
lets you see what statement labels exist. A *
matches any combination of characters, and t*
refers to all labels starting with the letter t. The
/all is a “command qualifier” that tells Meta-
math to include labels of hypotheses. (To see
the syntax explained, type help show labels.)
Type

MM> show labels t* /all

Metamath will respond with

The statement number, label, and type
are shown.

3 tt $F 4 tr $f 5 ts $f
8 tze $a
9 tpl $a 19 thl $p

You can use the show statement command
to get information about a particular statement.
For example, you can get information about the
statement with label mp by typing



MM> show statement mp /full

Metamath will respond with

Statement 17 is located on line 43 of
the file

"demoO.mm".

"Define the modus ponens inference
rule"

17 mp $a |- Q $.

Its mandatory hypotheses in RPN order
are:
wp $f wff P $.
wq $f wff Q $.
min $e |- P $.
maj $e |- CP ->Q ) $.

The statement and its hypotheses
require the

variables: Q P

The variables it contains are: Q P

The mandatory hypotheses and their order are
useful to know when you are trying to understand
or debug a proof.

Now you are ready to look at what’s really
inside of our proof. First, here is how to look
at every step in the proof—mot just the ones
corresponding to an ordinary formal proof, but



also the ones that build up the formulas that
appear in each ordinary formal proof step.

MM> show proof thl /lemmon /all

the following format:

This will display the proof on the screen in

tt

tze

1,2 tpl
tt

3,4 weq
tt

tt

6,7 weq
tt

9 a2

tt

tze

11,12 tpl
tt

13,14 weq
tt

tze

16,17 tpl
tt

18,19 weq
tt

$f
$a
$a
$f
$a
$f
$f
$a
$f
$a
$f
$a
$a
$f
$a
$f
$a
$a
$f
$a
$f

term
term
term
term

t
0
(t +0)
t

wff (t + 0 ) =t

term
term

wif t

term
- (
term
term
term
term

wiff (

term
term
term
term

t
t
=t

t + 0 )

t ~ O ct t ot

t +0) =1t
t
0

(t +0)
t

wff (t + 0 ) = ¢t

term

t



22 tt $f term t

23 21,22 weq $a wff t =t

24 20,23 wim $a wff ( ( t + 0 ) =
t ->t =t )

25 tt $f term t

26 25 a2 $a |- (t + 0 ) =t

27 tt $f term t

28 tze $a term O

29 27,28 tpl $a term ( t + 0 )

30 tt $f term t

31 tt $f term t

32 29,30,31 a1l $a |- C Ct +0) =
t > (C (t +0)

33 15,24,26,32 mp $a |- C C t + 0 )
=t ->t =1t )

34 5,8,10,33 mp $a |- t =t

The /1lemmon command qualifier specifies what



is known as a Lemmon-style display. Omitting
the /lemmon qualifier results in a tree-style proof
(see p. for an example) that is somewhat less
explicit but easier to follow once you get used to
it.

The first number on each line is the step
number of the proof. Any numbers that follow
are step numbers assigned to the hypotheses of
the statement in referenced by that step. Next is
the label of the statement referenced by the step.
The statement type of the statement referenced
comes next, followed by the math symbol string
constructed by the proof up to that step.

The last step, 34, contains the statement that
is being proved.

Looking at a small piece of the proof, notice
that steps 3 and 4 have established that ( t +
0 ) and t are terms, and step 5 makes use of
steps 3 and 4 to establish that ( t + 0 ) =t
is a wff. Let us let Metamath itself tell us in
detail what is happening in step 5. Note that
the “target hypothesis” refers to where step 5 is
eventually used, i.e., in step 34.



MM> show proof thl /detailed_step 5
Proof step 5: wp=weq $a wff ( t + O
) =t
This step assigns source "weq" ($a)
to target "wp
($f). The source assertion requires
the hypotheses
"tt" ($f, step 3) and "tr" ($f, step
4). The parent
assertion of the target hypothesis is
"mp" ($a,
step 34).
The source assertion before
substitution was:
weq $a wff t = r
The following substitutions were made
to the source
assertion:
Variable Substituted with
t (t +0)
r t
The target hypothesis before
substitution was:
wp $f wff P
The following substitution was made
to the target
hypothesis:



Variable Substituted with
P (t+0) =1t

The full proof just shown is useful to under-
stand what is going on in detail. However, most
of the time you will just be interested in the “es-
sential” or logical steps of a proof, i.e. those steps
that correspond to an ordinary formal proof. If
you type

MM> show proof thl /essential /lemmon
/renumber

you will see

1 a2 $a |- (t + 0 ) =t
2 a2 $a |- (t + 0 ) =t
3 ail $a |- C Ct + 0 ) =

t -> CCt +0)



4 2,3 mp $a |- C Ct +0 ) =
t ->t =1t )
5 1,4 mp $a |-t =t

Compare this to the formal proof on p. and
notice the resemblance. The /essential qual-
ifier in the show proof command tells Meta-
math to discard all $f hypotheses and everything
branching off of them in the proof tree when the
proof is displayed; this makes the proof look
more like an ordinary mathematical proof, which
does not normally incorporate the explicit con-
struction of expressions. The /renumber qualifier
means to renumber the steps to correspond only
to what is displayed.
To exit Metamath, type

MM> exit

2.3.1 Some Hints for Using the Cor
mand Line Interface

We will conclude this quick introduction to Meta-
math with some helpful hints on how to navigate



your way through the commands.

When you type commands into Metamath’s
CLI, you only have to type as many characters
of a command keyword as are needed to make
it unambiguous. If you type too few characters,
Metamath will tell you what the choices are. In
the case of the read command, only the r is
needed to specify it unambiguously, so you could
have typed

MM> r demoO.mm

instead of

MM> read demoO.mm

In our description, we always show the full com-
mand words. When using the Metamath CLI
commands in a command file (to be read with
the submit command), it is good practice to use
the unabbreviated command to ensure your in-
structions will not become ambiguous if more
commands are added to the Metamath program
in the future.

The command keywords are not case sensitive;
you may type either read or ReAd. File names



may or may not be case sensitive, depending on
your computer’s operating system. Metamath
label and math symbol tokens are case-sensitive.

The help command will provide you with a
list of topics you can get help on. You can then
type help topic to get help on that topic.

If you are uncertain of a command’s spelling,
just type as many characters as you remember
of the command. If you have not typed enough
characters to specify it unambiguously, Meta-
math will tell you what choices you have.

MM> show s

?Ambiguous keyword - please specify
SETTINGS,
STATEMENT , or SOURCE.

If you don’t what know argument to use as
part of a command, type a 7 at the argument
position. Metamath will tell you what it expected
there.

MM> show 7

?Expected SETTINGS, LABELS,



STATEMENT , SOURCE, PROOF,
MEMORY, TRACE_BACK, or USAGE.

Finally, you may type just the first word or
words of a command followed by return. Meta-
math will prompt you for the remaining part
of the command, showing you the choices at
each step. For example, instead of typing show
statement th1l /full you could interact in the
following manner:

MM> show
SETTINGS, LABELS, STATEMENT, SOURCE,

PROOF,

MEMORY , TRACE_BACK, or USAGE
<SETTINGS>? st

What is the statement label <thl>?

/ or nothing <nothing>? /

TEX, COMMENT_ONLY, or FULL <TEX>? £

/ or nothing <nothing>?
19 thl $p |-t =t $= ... $.

After each 7 in this mode, you must give Meta-
math the information it requests. Sometimes
Metamath gives you a list of choices with the de-
fault choice indicated by brackets < > . Pressing
return after the 7 will select the default choice.



Answering anything else will override the default.
Note that the / in command qualifiers is consid-
ered a separate token by the parser, and this is
why it is asked for separately.

2.4 Your First Proof

Proofs are developed with the aid of the Proof
Assistant. We will now show you how the proof
of theorem th1 was built. So that you can repeat
these steps, we will first have the Proof Assistant
erase the proof in Metamath’s source buffer, then
reconstruct it. (The source buffer is the place
in memory where Metamath stores the informa-
tion in the database when it is read in. New
or modified proofs are kept in the source buffer
until a write source command is issued.) In
practice, you would place a ? between $= and $.
in the database to indicate to Metamath that the
proof is unknown, and that would be your start-
ing point. Whenever verify proof command
encounters a proof with a ? in place of a proof



step, the statement is identified as not proved.

Before you start, you should write down on
a piece of paper the complete formal proof as it
would appear with the /essential qualifier in a
show proof command; see the display of show
proof thl /essential /lemmon /renumber abc
as an example. After you get used to using the
Proof Assistant you may get to a point where
you can “see” the proof in your mind and let the
Proof Assistant guide you in filling in the details,
at least for simpler proofs, but until you gain
that experience it is important to write down all
the details in advance. Otherwise you may waste
a lot of time as you let it take you down a wrong
path.

A proof is developed with the Proof Assistant
by working backwards, starting with the theo-
rem to be proved, and assigning each unknown
step with a theorem or hypothesis until no more
unknown steps remain. The Proof Assistant will
not let you make an assignment unless it can
be “unified” with the unknown step. This means
that a substitution of variables exists that will



make the assignment match the unknown step.
On the other hand, in the middle of a proof,
when working backwards, often more than one
unification (set of substitutions) is possible, since
there is not enough information available at that
point to uniquely establish it. In this case you
can tell Metamath which unification to choose,
or you can continue to assign unknown steps un-
til enough information is available to make the
unification unique.

We will assume you have entered Metamath
and read in the database as described above.
The following dialog shows how the proof was
developed. For more details on what some of the
commands do, refer to Section |5.6]

MM> prove thl

Entering the Proof Assistant. Type
HELP for help, EXIT

to exit. You will be working on the
proof of statement thil:

$p I- t =t

Note: The proof you are starting

with is already complete.
MM-PA>



The MM-PA> prompt means we are inside of
the Proof Assistant. Most of the regular Meta-
math commands (show statement, etc.) are still
available if you need them.

MM-PA> delete all
The entire proof was deleted.

We have deleted the whole proof so we can
start from scratch.

MM-PA> show new_proof/lemmon/all
17 $7 I-t = ¢

The show new_proof command is like show
proof except that we don’t specify a statement;
instead, the proof we're working on is displayed.

MM-PA> assign 1 mp

To undo the assignment, DELETE STEP 5
and INITIALIZE, UNIFY

if needed.

3 min=7 $7 |- $2

4 maj=7 $7 |- ( $2 -> t =t )

The assign command above means “assign
step 1 with the statement whose label is mp.”
Note that step renumbering will constantly occur



as you assign steps in the middle of a proof; in
general all steps from the step you assign until
the end of the proof will get moved up. In this
case, what used to be step 1 is now step 5, be-
cause the (partial) proof now has five steps: the
four hypotheses of the mp statement and the mp
statement itself. Let’s look at all the steps in our
partial proof:

MM-PA> show new_proof/lemmon/all

17 $7 wff $2

2 7 $7 wff t = t

3 7 $7 |- $2

4 7 $7 |1- ( $2 >t =t )
5 1,2,3,4 mp $a |-t =t

The symbol $2 is a temporary variable that
represents a symbol sequence not yet known. In
the final proof, all temporary variables will be
eliminated. The general format for a temporary
variable is $ followed by an integer. Note that
$ is not a legal Character in a math symbol (see
Section [4.2.1} p. [264]), so there will never be a
naming conﬂlct between real symbols and tem-
porary variables.



Unknown steps 1 and 2 are constructions of
the two wifs used by the modus ponens rule.
As you will see at the end of this section, the
Proof Assistant can usually figure these steps out
by itself, and we will not have to worry about
them. Therefore from here on we will display
only the “essential” hypotheses, i.e. those steps
that correspond to traditional formal proofs.

MM-PA> show new_proof/lemmon/essential

3 7 $7 |- $2
4 7 $7 |- ( $2 >t =t )
5 3,4 mp $a |-t =t

Unknown steps 3 and 4 are the ones we must
focus on. They correspond to the minor and
major premises of the modus ponens rule. We
will assign them as follows. Notice that because
of the step renumbering that takes place after an
assignment, it is advantageous to assign unknown
steps in reverse order, because earlier steps will
not get renumbered.

MM-PA> assign 4 mp

To undo the assignment, DELETE STEP 8
and INITIALIZE, UNIFY



if needed.

3 min=7 $7 |- $2

6 min=7 $7 |- $4

7 maj=7 $7 |- ( $4 -> ( $2 -> ¢
=t ) )

We are now going to describe an obscure fea-
ture that you will probably never use but should
be aware of. The Metamath language allows
empty symbol sequences to be substituted for
variables, but in most formal systems this feature
is never used. One of the few examples where
is it used is the The MIU-system described in
Appendix [D] But such systems are rare, and by
default this feature is turned off in the Proof As-
sistant. (It is always allowed for verify proof.)
Let us turn it on and see what happens.

MM-PA> set empty_substitution on

Substitutions with empty symbol
sequences is now allowed.

With this feature enabled, more unifications
will be ambiguous in the middle of a proof, be-
cause substitution of variables with empty symbol
sequences will become an additional possibility.



Let’s see what happens when we make our next
assignment.
MM-PA> assign 3 a2
There are 2 possible unifications.
Please select the correct
one or Q if you want to UNIFY
later.
Unify: |- $6
with: |- C $9 + 0 ) = $9
Unification #1 of 2 (weight = 7):
Replace "$6" with "( + 0 ) ="
Replace "$9" with ""
Accept (A), reject (R), or quit (Q)
<A>7 r

The first choice presented is the wrong one. If
we had selected it, temporary variable $6 would
have been assigned a truncated wif, and tempo-
rary variable $9 would have been assigned an
empty sequence (which is not allowed in our sys-
tem). With this choice, eventually we would
reach a point where we would get stuck because
we would end up with steps impossible to prove.
(You may want to try it.) We typed r to reject
the choice.



Unification #2 of 2 (weight = 21):
Replace "$6" with "( $9 + 0 ) = $9"
Accept (A), reject (R), or quit (Q)

<A>?7 q

To undo the assignment, DELETE STEP 4
and INITIALIZE, UNIFY

if needed.

7 min=7? $7 |- $8
8 maj=? $7 [- ( $8 -> ( $6 -> ¢t
=1t ) )

The second choice is correct, and normally
we would type a to accept it. But instead we
typed q to show what will happen: it will leave
the step with an unknown unification, which can
be seen as follows:

MM-PA> show new_proof/not_unified
4 min $a |- $6
=a2 = |- ( $9 + 0 ) = $9

Later we can unify this with the unify all/int
command.

The important point to remember is that
occasionally you will be presented with several
unification choices while entering a proof, when
the program determines that there is not enough



information yet to make an unambiguous choice
automatically (and this can happen even with
set empty_substitution turned off). Usually
it is obvious by inspection which choice is correct,
since incorrect ones will tend to be meaningless
fragments of wffs. In addition, the correct choice
will usually be the first one presented, unlike our
example above.
Enough of this digression. Let us go back the
the default setting.
MM-PA> set empty_substitution off
The ability to substitute empty
expressions for variables
has been turned off. Note that this
may make the Proof

Assistant too restrictive in some
cases.

If we delete the proof, start over, and get to
the point where we digressed above, there will
no longer be an ambiguous unification.

MM-PA> assign 3 a2
To undo the assignment, DELETE STEP 4

and INITIALIZE, UNIFY
if needed.



7 min=7? $7 |- $4
8 maj=? $7 |- ( $4 -> ( ( $5 +
0) =$5 ->t =1t ) )

Let us look at our proof so far, and continue.

MM-PA> show new_proof/lemmon

4 a2 $a |- ( $5 + 0 ) = $5

7 ? $7 |- $4

8 7 $7 |- ( $4 -> ( ( $5
+0) =95 >t =1t ) )

9 7,8 mp $a |- ( ( $5 + 0 ) =
$5 -> t =t )

10 4,9 mp $a |-t =t

MM-PA> assign 8 al

To undo the assignment, DELETE STEP
11 and INITIALIZE, UNIFY

if needed.

7 min=7 $7 |- (t + 0 ) =t

MM-PA> assign 7 a2

To undo the assignment, DELETE STEP 8
and INITIALIZE, UNIFY

if needed.

MM-PA> show new_proof/lemmon

4 a2 $a |- (t + 0 ) =t
8 a2 $a |- (t + 0 ) =t
12 ail $a |- C Ct +0) =

t > (C(t+0) =1t ->



13 8,12 mp $a |- C Ct +0) =
t ->t =1t )
14 4,13 mp $a |-t =t
Now all temporary variables and unknown
steps have been eliminated from the “essential”
part of the proof. When this is achieved, the
Proof Assistant can usually figure out the rest of
the proof automatically. (Note that the improve
command can occasionally be useful for filling in
essential steps as well, but it only tries to make
use of statements that introduce no new variables
in their hypotheses, which is not the case for mp.
Also it will not try to improve steps containing
temporary variables.) Let’s look at the complete
proof, then run the improve command, then look
at it again.
MM-PA> show new_proof/lemmon/all
17 $7 wff (t + 0 ) =t



2 7
3 7
4 3 a2
5 7
6 7
t >t =t )
7 ?
8 7 a2
9 7
10 7
11 7

12 9,10,11 a1l
t -> (C(Ct +0

13 5,6,8,12 mp
t -> t =1t )
14 1,2,4,13 mp

$?
$7
$a
$7
$7

$7
$a
$?
$7
$?
$a

$a

$a

MM-PA> improve all
A proof of length 1

step 11.

A proof of length 1

step 10.

wff t =t

term t

[- Ct +0) =t
wff (t + 0 ) =
wff ( ( t + 0 )
term t

|- Ct +0) =t
term ( t + 0 )
term t

term t

- C (Ct +0) =
=t ->

- C Ct +0) =
-t =t

was found for

was found for



A proof of length 3 was found for

step 9.

A proof of length 1 was found for
step 7.

A proof of length 9 was found for
step 6.

A proof of length 5 was found for
step 5.

A proof of length 1 was found for
step 3.

A proof of length 3 was found for
step 2.

A proof of length 5 was found for
step 1.

Steps 1 and above have been
renumbered.

CONGRATULATIONS! The proof is
complete. Use SAVE

NEW_PROOF to save it. Note: The
Proof Assistant does

not detect $d violations. After
saving the proof, you

should verify it with VERIFY PROOF.

The save new_proof command will save the
proof in the database. Here we will just display
it in a form that can be clipped out of a log file



and inserted manually into the database source
file with a text editor.
MM-PA> show new_proof/normal
————————— Clip out the proof below
this line:
tt tze tpl tt weq tt tt weq tt a2 tt
tze tpl tt weq
tt tze tpl tt weq tt tt weq wim tt a2
tt tze tpl tt
tt al mp mp $.
————————— The proof of ’thl’ to clip
out ends above this line.

There is another proof format called “com-
pressed” that you will see in databases. It is not
important to understand how it is encoded but
only to recognize it when you see it. Its only pur-
pose is to reduce storage requirements for large
proofs. A compressed proof can always be con-
verted to a normal one and vice-versa, and the
Metamath show proof commands work equally
well with compressed proofs. The compressed
proof format is described in Appendix [B]

MM-PA> show new_proof/compressed



————————— Clip out the proof below
this line:
( tze tpl weq a2 wim al mp )
ABCZADZAADZAEZJJKFLIA
AGHH §.
————————— The proof of ’thl’ to clip
out ends above this line.

Now we will exit the Proof Assistant. Since
we made changes to the proof, it will warn us
that we have not saved it. In this case, we don’t
care.

MM-PA> exit

Warning: You have not saved changes
to the proof.

Do you want to EXIT anyway (Y, N)
<N>7 vy

Exiting the Proof Assistant.

Type EXIT again to exit Metamath.

The Proof Assistant has several other com-
mands that can help you while creating proofs.
See Section [5.6] for a list of them.

A command that is often useful isminimize_wi
x/brief, which tries to shorten the proof. It can
make the process more efficient by letting you



write a somewhat “sloppy” proof then clean up
some of the fine details of optimization for you
(although it can’t perform miracles such as re-
structuring the overall proof).

2.5 A Note About Editing a
Database File

Once your source file contains proofs, there are
some restrictions on how you can edit it so that
the proofs remain valid. Pay particular attention
to these rules, since otherwise you can lose a lot
of work. It is a good idea to periodically verify
all proofs with verify proof * to ensure their
integrity.

If your file contains only normal (as opposed
to compressed) proofs, the main rule is that you
may not change the order of the mandatory hy-
potheses of any statement referenced in a later
proof. For example, if you swap the order of the
major and minor premise in the modus ponens
rule, all proofs making use of that rule will be-



come incorrect. The show statement command
will show you the mandatory hypotheses of a
statement and their order.

If a statement has a compressed proof, you
also must not change the order of its mandatory
hypotheses. The compressed proof format makes
use of this information as part of the compression
technique. Note that swapping the names of two
variables in a theorem will change the order of
its mandatory hypotheses.

The safest way to edit a statement, say mytheor
is to duplicate it then rename the original to
mytheoremOLD throughout the database. Once
the edited version is re-proved, all statements
referencing mytheoremOLD can be updated in the
Proof Assistant using minimize_with mytheorem
/allow_growth.



Chapter 3

Abstract
Mathematics
Revealed

3.1 Logic and Set Theory

Set theory can be viewed as a form of
exact theology.



RuDY RUCKER

Despite its seeming complexity, all of stan-
dard mathematics, no matter how deep or ab-
stract, can amazingly enough be derived from a
relatively small set of axioms or first principles.
The development of these axioms is among the
most impressive and important accomplishments
of mathematics in the 20th century. Ultimately,
these axioms can be broken down into a set of
rules for manipulating symbols that any techni-
cally oriented person can follow.

We will not spend much time trying to con-
vey a deep, higher-level understanding of the
meaning of the axioms. This kind of understand-
ing requires some mathematical sophistication
as well as an understanding of the philosophy
underlying the foundations of mathematics and
typically develops over time as you work with
mathematics. Our goal, instead, is to give you
the immediate ability to follow how theorems are
derived from the axioms and from other theo-

H3], p. 31



rems. This will be similar to learning the syntax
of a computer language, which lets you follow
the details in a program but does not necessarily
give you the ability to write non-trivial programs
on your own, an ability that comes with practice.
For now don’t be alarmed by abstract-sounding
names of the axioms; just focus on the rules for
manipulating the symbols, which follow the sim-
ple conventions of the Metamath language.

The axioms that underlie all of standard math-
ematics consist of axioms of logic and axioms of
set theory. The axioms of logic are divided into
two subcategories, propositional calculus (some-
times called sentential logic) and predicate calcu-
lus (sometimes called first-order logic or quanti-
fier theory). Propositional calculus is a prerequi-
site for predicate calculus, and predicate calculus
is a prerequisite for set theory. The version of set
theory most commonly used is Zermelo-Fraenkel
set theory.

Here in a nutshell is what the axioms are
all about in an informal way. The connection
between this description and symbols we will



show you won’t be immediately apparent and in
principle needn’t ever be. Our description just
tries to summarizes what mathematicians think
about when they work with the axioms.

Logic is more or less the translation of what
we would consider common sense into a rigorous
set of axioms. Suppose ¢, ¥, and x (the Greek
letters phi, psi, and chi) represent statements that
are either true or false, and x is a variable ranging
over some group of mathematical objects (sets,
integers, real numbers, etc.). In mathematics,
a “statement” really means a formula, and
could be for example “z = 2.” Logic makes
assertions such as “if ¢ implies 1) and ¢ implies
X, then ¢ implies x” (propositional calculus) and
“if ¢ is true for all z, then ¢ is true for some z’
(predicate calculus).

Set theory has to do with the manipulation
of objects and collections of objects, specifically
the abstract, imaginary objects that mathemat-
ics deals with, such as numbers. Everything that
is claimed to exist in mathematics is considered
to be a set. A set called the empty set contains
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nothing. We represent the empty set by @. Many
sets can be built up from the empty set. There
is a set represented by {@} that contains the
empty set, another set represented by {@,{2}}
that contains this set as well as the empty set,
another set represented by {{@}} that contains
just the set that contains the empty set, and so
on ad infinitum. All mathematical objects, no
matter how complex, are defined as being iden-
tical to certain sets: the integer 0 is defined as
the empty set, the integer 1 is defined as {&},
the integer 2 is defined as {@, {@}}. (How these
definitions were chosen doesn’t matter now, but
the idea behind it is that these sets have the
properties we expect of integers once suitable op-
erations are defined.) Mathematical operations,
such as addition, are defined in terms of opera-
tions on sets—their union, intersection, and so
on—operations you may have used in elementary
school when you worked with groups of apples
and oranges.

With a leap of faith, the axioms also postu-
late the existence of infinite sets, such as the



set of all non-negative integers (0, 1,2,..., also
called “natural numbers”). This set can’t be rep-
resented with the brace notation we just showed
you, but requires a more complicated notation
called “class abstraction.” For example, the infi-
nite set {z|“x is a natural number” } means the
“set of all objects = such that x is a natural num-
ber” i.e. the set of natural numbers; here, “z is a
natural number” is a rather complicated formula
when broken down into the primitive symbolsf]

2The statement “z is a natural number” is formally
expressed as “z € w,” where € (stylized epsilon) means
“is in” or “is an element of” and w (omega) means “the
set of natural numbers.” When “x € w” is completely
expanded in terms of the primitive symbols of set theory,
theresultis~ (=~ (Vz(-Vw(zew——-wex)—
z€x)—=(Vz(~(Vw(wezower) > Vw-
wez) > Vw(wez—>-Vv(vez—=vew
))) = VzVw (- (zex—~wezx)— (ﬁze
W (mz=wowez))))) = -Vy(~(=(V
("~ Vw(zew——-wey)—ze€y)—(Vz (- (
Vw(wez—wey) >Vw-wez) > YVw(w
€z Vov(vez—svew))) = VzVw (-
(zey—mwey)=(zew—-(~z=w—-wEe
z))))=(Vzozey—>-Vw (- (wey—Vz



Actually, the primitive symbols don’t even in-
clude the brace notation. The brace notation
is a high-level definition, which you can find in
Section [3.4

Interestingly, the arithmetic of integers and
rationals can be developed without appealing
to the existence of an infinite set, whereas the
arithmetic of real numbers requires it.

Each variable in the axioms of set theory rep-
resents an arbitrary set, and the axioms specify
the legal kinds of things you can do with these
variables at a very primitive level.

Now, you may think that numbers and arith-
metic are a lot more intuitive and fundamental
than sets and therefore should be the foundation
of mathematics. What is really the case is that
you've dealt with numbers all your life and are
comfortable with a few rules for manipulating
them such as addition and multiplication. Those
rules only cover a small portion of what can be

(wez—-zey))>(Vz(wez—s-z€y
) >weEy))))—>x€y))). Section[3.4 shows the
hierarchy of definitions that leads up to this expression.



done with numbers and only a very tiny fraction
of the rest of mathematics. If you look at any ele-
mentary book on number theory, you will quickly
become lost if these are the only rules that you
know. Even though such books may present a
list of “axioms” for arithmetic, the ability to use
the axioms and to understand proofs of theo-
rems (facts) about numbers requires an implicit
mathematical talent that frustrates many people
from studying abstract mathematics. The kind
of mathematics that most people know limits
them to the practical, everyday usage of blindly
manipulating numbers and formulas, without any
understanding of why those rules are correct nor
any ability to go any further. For example, do
you know why multiplying two negative numbers
yields a positive number? Starting with set the-
ory, you will also start off blindly manipulating
symbols according to the rules we give you, but
with the advantage that these rules will allow
you, in principle, to access all of mathematics,
not just a tiny part of it.

Of course, concrete examples are often helpful



in the learning process. For example, you can
verify that that 2 -3 = 3 - 2 by actually grouping
objects and can easily “see” how it generalizes to
x -y =1y -x, even though you might not be able
to rigorously prove it. Similarly, in set theory it
can be helpful to understand how the axioms of
set theory apply to (and are correct for) small
finite collections of objects. You should be aware
that in set theory intuition can be misleading for
infinite collections, and rigorous proofs become
more important. For example, while x -y =
y - x is correct for finite ordinals (which are the
natural numbers), it is not usually true for infinite
ordinals.

3.2 The Axioms for All of
Mathematics

In this section, we will show you how the axioms
for all of standard mathematics (i.e. logic and
set theory) as they are traditionally presented.
The traditional presentation is useful for some-



one with the mathematical experience needed to
correctly manipulate high-level abstract concepts.
For someone without this talent, knowing how
to actually make use of these axioms can be diffi-
cult. The purpose of this section is to allow you
to see how the version of the axioms used in the
standard Metamath database set.mm relates to
the typical version in textbooks, and also to give
you an informal feel for them.

3.2.1 Propositional Calculus

Propositional calculus concerns itself with state-
ments that can be interpreted as either true or
false. Some examples of statements (outside of
mathematics) that are either true or false are “It
is raining today” and “The United States has a
female president.” In mathematics, as we men-
tioned, statements are really formulas.

In propositional calculus, we don’t care what
the statements are. We also treat a logical combi-
nation of statements, such as “It is raining today
and the United States has a female president,” no



differently from a single statement. Statements
and their combinations are called well-formed
formulas (wifs). We define wifs only in terms of
other wffs and don’t define what a “starting” wff
is. As is common practice in the literature, we
use Greek letters to represent wifs.

Specifically, suppose ¢ and ¢ are wifs. Then
the combinations ¢ — 1 (“p implies ¢,” also
read “if ¢ then ¥”) and —¢ (“not ¢”) are also
wits.

The three axioms of propositional calculus
are all wifs of the following form:E|

o = (Y= p)
(o= (W —=x) = (g =) = (¢ = x))
(= = =) = (¥ — )

There are an infinite number of axioms, one
for each possible wff of the above form. (For
this reason, axioms such as the above are often

3A remarkable result of C. A. Meredith squeezes these
three axioms into the single axiom ((((¢ = ¥) — (-x —
=0)) = x) = 71) = (T = ) = (6 = ¢)) [37], which is
believed to be the shortest possible.



called “axiom schemes.”) Each Greek letter in
the axioms may be substituted with a more com-
plex wif to result in another axiom. For example,
substituting —(¢ — x) for ¢ in the first axiom
yields =(¢ = x) — (¥ — =(¢ = X)), which is
still an axiom.

To deduce new true statements (theorems)
from the axioms, a rule called “modus ponens”
is used. This rule states that if the wif ¢ is an
axiom or a theorem, and the wff ¢ — 1 is an
axiom or a theorem, then the wiff ¢ is also a
theorem.

As a non-mathematical example of modus
ponens, suppose we have proved (or taken as
an axiom) “Bob is a man” and separately have
proved (or taken as an axiom) “If Bob is a man,
then Bob is a human.” Using the rule of modus
ponens, we can logically deduce, “Bob is a hu-
man.”

From Metamath’s point of view, the axioms
and the rule of modus ponens just define a me-
chanical means for deducing new true statements
from existing true statements, and that is the



complete content of propositional calculus as far
as Metamath is concerned. You can read a logic
textbook to gain a better understanding of their
meaning, or you can just let their meaning slowly
become apparent to you after you use them for a
while.

It is actually rather easy to check to see if a
formula is a theorem of propositional calculus.
Theorems of propositional calculus are also called
“tautologies.” The technique to check whether a
formula is a tautology is called the “truth table
method,” and it works like this. A wif ¢ — ¢ is
false whenever ¢ is true and 1) is false. Otherwise
it is true. A wif - is false whenever ¢ is true
and false otherwise. To verify a tautology such as
© — (¥ — ), you break it down into sub-wffs
and construct a truth table that accounts for all
possible combinations of true and false assigned
to the wif metavariables:



el v]v—=ple=W—y) |
T|T| T T
T F| T T
F|T| F T
FIF| T T

If all entries in the last column are true, the
formula is a tautology.

Now, the truth table method doesn’t tell you
how to prove the tautology from the axioms, but
only that a proof exists. Finding an actual proof
(especially one that is short and elegant) can be
challenging. Methods do exist for automatically
generating proofs in propositional calculus, but
the proofs that result can sometimes be very long.
In the Metamath set.mm database, most or all
proofs were created manually.

3.2.2 Predicate Calculus

Predicate calculus introduces the concept of “in-
dividual variables,” which we will usually just
call “variables.” These will always represent sets



when we get to set theory. There are also three
new symbols V, =, and €, read “for all,” “equals,”
and “is an element of” respectively. We will rep-
resent variables with the letters z, vy, z, and w,
as is common practice in the literature.

To prevent confusion, it might be best at this
point to think of the variables of Metamath as
“metavariables,” because they are not quite the
same as the variables we are introducing here. A
(meta)variable in Metamath can be a wff or an
individual variable, as well as many other things;
in general, it represents a kind of place holder for
an unspecified sequence of math symbols.

In predicate calculus, we extend the definition
of a wif. If ¢ is a wif and x and y are variables,
then Vx p, x =y, and x € y are wifs. Note that
these three new types of wifs can be considered
“starting” wiffs from which we can build other wifs
with — and = . The concept of a starting wif was
absent in propositional calculus. But starting wif
or not, all we are really concerned with is whether
our wifs are correctly constructed according to
these mechanical rules.



In standard texts of logic, there are two ax-
ioms of predicate calculus:

Vo o(x) — ¢(y), where “y is properly
substituted for x.”
V(e — 1) — (¢ — Va1b), where “x is not free
in ¢.”

Now at first glance, this seems simple: just
two axioms. However, conditional clauses are
attached to each axiom describing requirements
that may seem puzzling to you. In addition, the
first axiom puts a variable symbol in parentheses
after each wff, seemingly violating our definition
of a wff; this is just an informal way of referring
to some arbitrary variable that may occur in
the wif. The conditional clauses do, of course,
have a precise meaning, but as it turns out the
precise meaning is somewhat complicated and
awkward to formalize in a way that a computer
handle easily. Unlike propositional calculus, a
certain amount of mathematical sophistication
and practice is needed to be able to easily grasp
and manipulate these concepts correctly.



We take a different approach in the Metamath
database set.mm. We do not use the primitive
notions of “free variable” and “proper substitu-
tion” at all. Instead, we use a set of axioms that
are almost as simple to manipulate as those of
propositional calculus. Our axiom system avoids
complex primitive notions by effectively embed-
ding the complexity into the axioms themselves.
As a result, we will end up with a larger number
of axioms, but they are ideally suited for a com-
puter language such as Metamath. (Section
shows these axioms.)

We will not elaborate on the “free variable
and “proper substitution” concepts here. We
listed the two axioms above so that you will
recognize them when you encounter them in the
literature. You may consult [19, ch. 3-4] (as well
as many other books) for a precise explanation
of these concepts. If you intend to do serious
mathematical work, it is wise to become familiar
with the traditional textbook approach; even
though the concepts embedded in their axioms
require a higher level of sophistication, they can
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be more practical to deal with on an everyday,
informal basis. Even if you are just developing
Metamath proofs, familiarity with the traditional
approach can help you arrive at a proof outline
much faster, which you can then convert to the
detail required by Metamath.

There is also a new rule of inference in predi-
cate calculus: if ¢ is an axiom or a theorem, then
Vx ¢ is also a theorem. This is called the rule of
“generalization.”

Unlike propositional calculus, no decision pro-
cedure analogous to the truth table method exists
(nor theoretically can exist) that will definitely
determine whether a formula is a theorem of pred-
icate calculus. Much of the work in the field of
automated theorem proving has been dedicated
to coming up with clever heuristics for proving
theorems of predicate calculus, but they can never
be guaranteed to work always.



3.2.3 Equality

Predicate calculus may be presented with or with-
out axioms for equality. We will require the ax-
ioms of equality as a prerequisite for the version
of set theory we will use. In standard systems,
the axioms for equality are the following two:

r=x

r=y = (o(r,r) = ¢(z,y)) where “p(z,y)
arises from ¢(z, x) by replacing some, but not
necessarily all, free occurrences of = by vy,
provided that y is free for x in ¢(z, x).”

The first equality axiom is simple, but the con-
dition on the second one is somewhat awkward
to implement on a computer. Again, the axiom
system we use in the set.mm database avoids the
complexity of this condition by effectively embed-
ding the complexity into the axioms themselves.



3.2.4 Set Theory

Traditional Zermelo-Fraenkel set theory has 10
axioms, which can be expressed in the language
of predicate calculus. In this section, we will list
only the names and brief English descriptions
of these axioms, since we will give you the pre-
cise formulas used by the Metamath set theory
database set.mm later on.

In the descriptions of the axioms, we assume
that =, y, z, w, and v represent sets. These are
the same as the variables in our predicate calcu-
lus system above, except that now we informally
think of the variables as ranging over sets. Note
that the terms “object,” “set,” “element,” “col-
lection,” and “family” are synonymous, as are “is
an element of,” “is a member of,” “is contained
in,” and “belongs to.” The different terms are
used for convenience; for example, “a collection
of sets” is less confusing than “a set of sets.” A
set x is said to be a “subset” of y if every element
of x is also an element of y; we also say x is
“included in” y.



The axioms are very general and apply to
almost any conceivable mathematical object, and
this level of abstraction can be overwhelming at
first. To gain an intuitive feel, it can be help-
ful to draw a picture illustrating the concept;
for example, a circle containing dots could rep-
resent a collection of sets, and a smaller circle
drawn inside of the circle could represent a sub-
set. Overlapping circles can illustrate intersection
and union. Circles that illustrate the concepts
of set theory are frequently used in elementary
textbooks and are called Venn diagrams.

1. Axiom of Extensionality: Two sets are
identical if they contain the same elements.

2. Axiom of Pairing: The set {z,y} exists.

3. Axiom of Power Sets: The power set of
a set (the collection of all of its subsets) ex-
ists. For example, the power set of {z,y} is
{@,{z},{y},{x,y}} and it exists.

4. Axiom of the Null Set: The empty set &
exists.

5. Axiom of Union: The union of a set (the
set containing the elements of its members) ex-



ists. For example, the union of {{z,y},{z}} is
{z,y, 2} and it exists.

6. Axiom of Regularity: Roughly, no set
can contain itself, nor can there be membership
“loops,” such as a set being an element of one of
its members.

7. Axiom of Infinity: An infinite set exists.
An example of an infinite set is the set of all
integers.

8. Axiom of Separation: The set exists that
is obtained by restricting x with some property.
For example, if the set of all integers exists, then
the set of all even integers exists.

9. Axiom of Replacement: The range of a
function whose domain is restricted to the el-
ements of a set x, is also a set. For example,
there is a function from integers (the function’s
domain) to their squares (its range). If we re-
strict the domain to even integers, its range will
become the set of squares of even integers, so
this axioms asserts that the set of squares of even
numbers exists. Technical note: In general, the
“function” need not be a set but can be a proper



class.

10. Axiom of Choice: Let x be a set whose
members are pairwise disjoint (i.e, whose mem-
bers contain no elements in common). Then
there exists another set containing one element
from each member of x. For example, if z is
{{y, 2z}, {w,v}}, where y, z, w, and v are differ-
ent sets, then a set such as {z, w} exists (but the
axiom doesn’t tell us which one). (Actually the
Axiom of Choice is redundant if the set x, as in
this example, has a finite number of elements.)

The Axiom of Choice is usually considered an
extension of ZF set theory rather than a proper
part of it. It is sometimes considered philosoph-
ically controversial because it specifies the exis-
tence of a set without specifying what the set is.
ZF set theory that includes the Axiom of Choice
is called ZFC.

When expressed symbolically, the Axiom of
Separation and the Axiom of Replacement con-
tain wff symbols and therefore each represent
infinitely many axioms, one for each possible
wif. For this reason, they are often called axiom



schemes.

It turns out that the Axiom of the Null Set,
the Axiom of Pairing, and the Axiom of Separa-
tion can be derived from the other axioms and are
therefore unnecessary, although they tend to be
included in standard texts for various reasons (his-
torical, philosophical, and possibly because some
authors may not know this). In the Metamath
set theory database, these redundant axioms are
derived from the other ones.

3.3 The Axioms in the Meta
math Language

The standard textbook axioms of predicate cal-
culus are somewhat cumbersome to implement
on a computer because of the complex notions of
“free variable” and “proper substitution.” While
it is possible to use the Metamath language to
implement these concepts, we have chosen not to
do so in the set.mm set theory database. Instead,
we have eliminated them by carefully crafting



the axioms so as to avoid them. This makes it
easy for a beginner to follow the steps in a proof
without knowing any advanced concepts other
than the simple concept of replacing variables
with expressions. Here we list the axioms as they
appear in set.mm so you can look them up there
easily. Incidentally, the show statement /tex
command was used to typeset them.

In order to develop the concepts of free vari-
able and proper substitution from the axioms
described below, we use an additional Metamath
statement type called “disjoint variable restric-
tion” that we have not encountered before. In
the context of the axioms, the statement $d xy
simply means that x and y must be distinct,
i.e. they may not be simultaneously substituted
with the same variable. The statement $d x ¢
means variable x must not occur in wff . For
the precise definition of $d, see Section [4.2.4]

In our system, the axioms of predicate calcu-
lus have been divided into what we call “pure
predicate calculus,” which uses no = or € sym-
bols, and “equality and substitution.” The for-



mer is weaker than traditional predicate calculus
because it does not have substitution (although
it is a beautifully simple and interesting system
in itself), and the latter extends its power to the
full predicate calculus with equality.

You should also note that our system of predi-
cate calculus is specifically tailored for set theory;
thus there are only two specific predicates = and
€ and no functions or constants unlike more gen-
eral systems.

Finally, I do not claim that these axioms are
the most elegant possible. They have more “met-
alogical” power than standard axioms (although
they are equivalent in a “logical” sense) and the
ones I have chosen at least do the job. Perhaps
a logician who reads this would be interested
in devising a set of equivalent axioms that are
shorter or more elegant in some sense. (For ex-
ample, there used to be an axiom ax-15 in our
list that was later discovered to be redundant in
this version of the axiom system. The Comment
on p. has a further remark on this axiom.)

A rigorous justification for this system can be



found in [34].

3.3.1 Propositional Calculus

Axiom of Simplification.
ax-1 $a F(p—=(v—p))
Axiom of Distribution.
ax-2 $a F((¢—=(v—=x)) = ((¢e—=v)—

(¢—=x)))
Axiom of Contraposition.

ax-3 $a F((—p—=-v)=(v—p))
Rule of Modus Ponens.

maj $e F(p—v)

min $e Fo

ax-mp $a

3.3.2 Pure Predicate Calculus

Axiom of Specialization.
ax-4 $a F(Vrp—y)
Axiom of Quantified Implication.
ax-5 $a FH(Va(Vey—=¢)—(Vep—-Var
V)



Axiom of Quantified Negation.

ax-6 $a F(~Vz-Vrp—p)
Axiom of Quantifier Commutation.

ax-7 $a F(VaVyp—=>VyVay)
Rule of Generalization.

ax-g.1 $e ko

ax-gen $a FVaxop

3.3.3 Equality and Substitution

Axiom of Equality (1).
ax-8 $a F(rz=y—(r=2—-y=2))
Axiom of Existence.
ax-9 $a F(Va(x=y—=>Vzp)—p)
Axiom of Quantifier Substitution.
ax-10 $a F (Ve z=y— (Vzp—=>VYyy))
Axiom of Variable Substitution.
ax-11 $a F(~Vezrz=y—(z=y—(p—V
r(r=y—¢))))
Axiom of Quantifier Introduction (1).
ax-12 $a H(-Vzz=ax—(Vzz=y—(
r=y—Vzz=y)))
Axiom of Equality (2).



ax-13 $a F(z=y—(z€2—>y€e€z))
Axiom of Equality (3).
ax-14 $a FH(rz=y—(z€x—>z2€y))
Axiom of Distinct Variables. (This axiom re-
quires that two individual variables be distinct.)
$d x vy
ax-16 $a F(Vzz=y—(p—=Vzp))
Axiom of Quantifier Introduction (2). (This ax-
iom requires that the individual variable not oc-
cur in the wif.)
$d x o
ax-17 $a F(p—=>Vazy)

3.3.4 Set Theory

In order to make the axioms of set theory a
little more compact, there are several definitions
from logic that we make use of implicitly, namely,
“logical AND,” “logical equivalence,” and “there
exists.”

(p A1) stands for —(p — )

(o< ¢) stands for (¢ =) A (Y = @)
Jr e stands for —Vz—-p



In addition, the axioms of set theory require
that all variables be distinctﬁ thus we also as-
sume:

$d ryzw

Axiom of Extensionality.
ax-ext $a H(Va(zxe€eycrez)—y=2)
Axiom of Replacement.
ax-rep $a H(VwIyVz(Vyp—z2z=y)—
JyVz(zey+Jw(werAVy
©)))
Axiom of Union.
ax-un $a FJzVy(Jz(yexAhzez)—ye
z)
Axiom of Power Sets.

4Set theory axioms can be devised so that no variables
are required to be distinct, provided we replace ax-16
with an axiom stating that “at least two things exist,”
thus making ax-17 the only other axiom requiring the
$d statement. These axioms are unconventional and
are not presented here, but they can be found on the
http://metamath.org web site. See also the Comment

on p.@


http://metamath.org

ax-pow $a FIdaxVy (Ve (rxecy—axrez)—y
€x)
Axiom of Regularity.
ax-reg $a FH(Jrxrxecy—Jax(zeyAVz(z
Ex——z€Y)))
Axiom of Infinity.
ax-inf $a FIx(yerxAVy(ycex—3Iz(y
€zNz€x)))
Axiom of Choice.
ax-ac $a FJzVyVz((yezAzew)—3
wVy(Jw((yezAzew) A (
YEWANWET))y=w))

3.3.5 That’s It

There you have it, the axioms for (essentially)
all of mathematics! Wonder at them and stare
at them in awe. Put a copy in your wallet, and
you will carry in your pocket the encoding for
all theorems ever proved and that ever will be
proved, from the most mundane to the most
profound.



3.4 A Hierarchy of Definition

The axioms in the previous section in principle
embody everything that can be done within stan-
dard mathematics. However, it is impractical to
accomplish very much by using them directly, for
even simple concepts (from a human perspective)
can involve extremely long, incomprehensible for-
mulas. Mathematics is made practical by intro-
ducing definitions. Definitions usually introduce
new symbols, or at least new relationships among
existing symbols, to abbreviate more complex for-
mulas. An important requirement for a definition
is that there exist a straightforward (algorithmic)
method for eliminating the abbreviation by ex-
panding it into the more primitive symbol string
that it represents. Some important definitions
included in the file set.mm are listed in this sec-
tion for reference, and also to give you a feel for
why something like w (the set of natural num-
bers 0, 1, 2,...) becomes very complicated when
completely expanded into primitive symbols.
What is the motivation for definitions, aside



from allowing complicated expressions to be ex-
pressed more simply? In the case of w, one goal
is to provide a basis for the theory of natural
numbers. Before set theory was invented, a set of
axioms for arithmetic, called Peano’s postulates,
was devised and shown to have the properties one
expects for natural numbers. Now anyone can
postulate a set of axioms, but if the axioms are
inconsistent contradictions can be derived from
them. Once a contradiction is derived, anything
can be trivially proved, including all the facts of
arithmetic and their negations. To ensure that an
axiom system is at least as reliable as the axioms
for set theory, we can define sets and operations
on those sets that satisfy the new axioms. In
the set.mm Metamath database, we prove that
the elements of w satisfy Peano’s postulates, and
it’s a long and hard journey to get there directly
from the axioms of set theory. But the result
is confidence in the foundations of arithmetic.
And there is another advantage: we now have
all the tools of set theory at our disposal for
manipulating objects that obey the axioms for



arithmetic.

What are the criteria we use for definitions?
First, and of utmost importance, the definition
should not be creative, that is it should not al-
low an expression that previously qualified as a
wif but was not provable, to become provable.
Second, the definition should be eliminable, that
is there should exist an algorithmic method for
proving any expression using the definition into
a logically equivalent expression that previously
qualified as a wif.

In almost all cases below, definitions connect
two expressions with either <> or =. Eliminatingﬂ
such a definition is a simple matter of substitut-
ing the expression on the left-hand side (definien-
dum or thing being defined) with the equivalent,
more primitive expression on the right-hand side

SHere we mean the elimination that a human might
do in his or her head. To eliminate them as part of a
Metamath proof we would invoke one of a number of
theorems that deal with transitivity of equivalence or
equality; there are many such examples in the proofs in
set.mm.



(definiens or definition).

Often a definition has variables on the right-
hand side which do not appear on the left-hand
side; these are called dummy variables. In this
case, any allowable substitution (such as a new,
distinct variable) can be used when the definition
is eliminated. Dummy variables may be used only
if they are effectively bound, meaning that the
definition will remain logically equivalent upon
any substitution of a dummy variable with any
other qualifying expression, i.e. any symbol string
(such as another variable) that meets the restric-
tions on the dummy variable imposed by $d and
$f statements. For example, we could define a
constant L (inverted tee, meaning logical “false”)
as (p A =), i.e. “phi and not phi.” Here ¢ is
effectively bound because the definition remains
logically equivalent when we replace ¢ with any
other wif. (We do not define 1 in set.mm.)

There are two cases where eliminating def-
initions is a little more complex. These cases
are the definitions df-bi and df-cleq. The first
stretches the concept of a definition a little, as in



effect it “defines a definition;” however, it meets
our requirements for a definition in that it is
eliminable and does not strengthen the language.
Theorem bii shows the substitution needed to
eliminate the <+ symbol.

Definition df-cleq extends the usage of the
equality symbol to include “classes” in set theory.
The reason it is potentially problematic is that
it can lead to statements which do not follow
from logic alone but presuppose the Axiom of
Extensionality, so we include this axiom as a hy-
pothesis for the definition. We could have made
df-cleq directly eliminable by introducing a new
equality symbol, but have chosen not to do so in
keeping with standard textbook practice. Defini-
tions such as df-cleq that extend the meaning
of existing symbols must be introduced carefully
so that they do not lead to contradictions. Defi-
nition df-clel also extends the meaning of an
existing symbol (€); while it doesn’t strengthen
the language like df-cleq, this is not obvious
and it must also be subject to the same scrutiny.

Exercise: Study how the wif x € w, meaning



“r is a natural number,” could be expanded in
terms of primitive symbols, starting with the def-
initions df-clel on p. and df-om on p.
and working your way back. Don’t bother to
work out the details; just make sure that you
understand how you could do it in principle. The
answer is shown in the footnote on p. If you
actually do work it out, you won’t get exactly
the same answer because we used a few simpli-
fications such as discarding occurrences of ——
(double negation).

In the definitions below, we have placed the
ASCIl Metamath source below each of the for-
mulas to help you to become familiar with the
notation in the database. For simplicity, the nec-
essary $f and $d statements are not shown. If
you are in doubt, use the show statement com-
mand in the Metamath program to see the full
statement.

To understand the motivation for these def-
initions, you should consult the references indi-
cated: Takeuti and Zaring [59], Quine [48], Bell
and Machover [5], and Enderton [I6]. Our list of



definitions is provided more for reference than as
a learning aid. However, by looking at a few of
them you can gain a feel for how the hierarchy
is built up. The definitions are a representative
sample of the 130 or so in set.mm, but they are
complete with respect to the theorem examples
we will present in Section Also, some are
slightly different from, but logically equivalent
to, the ones in set.mm (some of which have been
revised over time to shorten them, for example).

3.4.1 Definitions for Propositional
Calculus
The symbols ¢, ¢, and x represent wifs.

Our first definition introduces the bicondi-
tional connectiveﬁ (also called logical equivalence).

6The term “connective” is informally used to mean a
symbol that is placed between two variables or adjacent
to a variable, whereas a mathematical “constant” usually
indicates a symbol such as the number 0 that may replace
a variable or metavariable. From Metamath’s point of
view, there is no distinction between a connective and a



Unlike most traditional developments, we have
chosen not to have a separate symbol such as
“Df.” to mean “is defined as.” Instead, we will
use the biconditional connective for this purpose,
as it lets us to use logic to manipulate definitions
directly. Here we state the properties of the bi-
conditional connective with a carefully crafted
$a statement, which effectively uses the bicondi-
tional connective to define itself. The <+ symbol
can be eliminated from a formula using theorem
bii, which is derived later.

Define the biconditional connective.
df-bi $a F-(((¢ev)=>-((¢—=vY)—
(v=9))) =2~ (= (=)
== (V=)= (o))
df-bi $a [- -. ( ( ( ph <> ps ) -> -.
-. (ps>ph) )) —>-. (C-. ([
ps > ph ) ) -> (ph<>ps) ) ) $
This theorem relates the biconditional connec-
tive to primitive connectives and can be used to

constant; both are constants in the Metamath language.



eliminate the <+ symbol from any wif.

bii $p F((pev)e—((g—=¢)—=— (¥
—¢)))
bii $p [- C ( ph <=> ps ) <> -. ( ( ph
“>ph) ) ) $= ... 8.

Define disjunction (OR).

df-or $a F((pVy)e(mp—1))

df-or $a |- ( ( ph \/ ps ) <> ( -. ph
Define conjunction (AND).

df-an $a F((pAY )= (e—=-1))

df-an $a |- ( (ph /\ ps ) <> -. ( ph
Define disjunction (OR) of 3 wifs.

df-3or $a i)—((goviﬁVX)H((SOV?P)VX)

df-3or $a |- ( ( ph \/ ps \/ ch ) <> (
) ) $.

Define conjunction (AND) of 3 wifs.
df-3an $a F((@AYAX) ((@AY)AX)

df-3an $a |- ( ( ph /\ ps /\ ch ) <> (



) ) 8.

3.4.2 Definitions for Predicate Cal-
culus

The symbols z, y, and z represent individual vari-
ables of predicate calculus. In this section, they
are not necessarily distinct unless it is explicitly
mentioned.

Define existential quantification.

df-ex $a H(Jz < Vr-yp)
df-ex $a |- ( E. x ph <-> -. A. x -. ph

Define proper substitution. Note that this defi-
nition is valid even when z and y are the same
variable. The first conjunct is a “trick” used
to achieve this property, making the definition
look somewhat peculiar at first. For our nota-
tion, we use [y/z|p to mean “the wif that results
when y is properly substituted with z in the wff
©.” The notation is different from the notation
(x|y) that is sometimes used, because the latter



notation is ambiguous for us: for example, we
don’t know whether —p(z|y) is to be interpreted
as ~(pzly) or (—pzly)[] Other texts often use
©(y) to indicate our [y/z]p, but this notation is
even more ambiguous since there is no explicit
indication of what is being substituted.

df-sb $a F([y/z]ee ((z=y—p)A3Jx

(1=yrp)))
df-sb $a |- ( [y / x ] ph <> ( ( x =
x=y/\ph)))$.

"Because of the way we initially defined wifs, this is
the case with any postfix connective (one occurring after
the symbols being connected) or infix connective (one
occurring between the symbols being connected). Meta-
math does not have a built-in notion of operator binding
strength that could eliminate the ambiguity. The ini-
tial parenthesis effectively provides a prefix connective to
eliminate ambiguity. Some conventions, such as Polish
notation used in the 1930’s and 1940’s by Polish logi-
cians, use only prefix connectives and thus allow the total
elimination of parentheses, at the expense of readability.
In Metamath we could actually redefine all notation to
be Polish if we wanted to without having to change any
proofs!



Define existential uniqueness (“there exists ex-
actly one”). Note that y is a variable distinct
from x and not occurring in .
df-eu $a H(IlzpeoIJyVae(pear=y))
df-eu $a |- ( E! x ph <> E. y A. x (p

3.4.3 Definitions for Set Theory

The symbols x, y, z, and w represent individ-
ual variables of predicate calculus, which in set
theory are understood to be sets. To make set
theory more practical, we introduce the notion
of a “class.” A class is either a set variable (such
as x) or an expression of the form {x|¢} (called
an “abstraction class”). Note that sets (i.e. indi-
vidual variables) always exist (this is a theorem
of logic, namely Jyy = x for any set x), whereas
classes may or may not exist (i.e. Jyy = A may
or may not be true). If a class does not exist it
is called a “proper class.” Definitions df-clab,
df-cleq, and df-clel can be used to convert an
expression containing classes into one containing
only set variables and wff metavariables.



The symbols A, B, C, D, F, G, and R are
metavariables that range over classes. A class
metavariable A may be eliminated from a wff by
replacing it with {x|¢} where neither z nor ¢
occur in the wif.

In this section, individual variables are always
assumed to be distinct from each other unless
otherwise indicated. In addition, dummy vari-
ables on the right-hand side of a definition do
not occur in the class and wif metavariables in
the definition.

The definitions we present here are a partial
but self-contained collection selected from sev-
eral hundred that appear in the current set.mm
database. They are adequate for a basic develop-
ment of elementary set theory.

Define the abstraction class. x and y need not
be distinct. Definition 2.1 of Quine, p. 16. This
definition may seem puzzling since it is shorter
than the expression being defined and does not
buy us anything in terms of brevity. The reason
we introduce this definition is because it fits in



neatly with the extension of the € connective
provided by df-clel.

df-clab $a F(ze{y|lplt<[z/yle)
df-clab $a |- ( x e. {y | ph } <> [ x

Define the equality connective between classes.
See Quine or Chapter 4 of Takeuti and Zaring
for its justification and methods for eliminat-
ing it. This is an example of a somewhat “dan-
gerous” definition, because it extends the use
of the existing equality symbol rather than in-
troducing a new symbol, allowing us to make
statements in the original language that may not
be true. For example, it permits us to deduce
y =z <> Vr(r € y <> = € z) which is not a theo-
rem of logic but rather presupposes the Axiom
of Extensionality, which we include as a hypoth-
esis so that we can know when this axiom is
assumed in a proof (with the show trace_back
command). We could avoid the danger by intro-
ducing another symbol, say =, in place of =; this
would also have the advantage of making elimina-
tion of the definition straightforward and would



eliminate the need for Extensionality as a hypoth-
esis. We would then also have the advantage of
being able to identify exactly where Extensional-
ity truly comes into play. One of our theorems
would be z = y <» x = y by invoking Extension-
ality. However in keeping with standard practice
we retain the “dangerous” definition.

df-cleq.1 $e FH (Ve (zcysrzez)—y=

z)
df-cleq $a F(A=B+<Ve(rxeA-zeB

))

df-cleq.1 $e |- (A. x (xe. y<>xe
df-cleq $a |- (A =B <> A. x (xe. A

Define the membership connective between classes.
Theorem 6.3 of Quine, p. 41, which we adopt as a
definition. Note that it extends the use of the ex-
isting membership symbol, but unlike df-cleq
it does not extend the set of valid wifs of logic
when the class metavariables are replaced with
set variables.

df-clel $a F(AeB+<3Jdz(z=AANzeEB)

)



df-clel $a |- (A e. B<>E. x (x=A

Define inequality.
df-ne $a F(A# B+ A=DB)
df-ne $a |- (A =/=B<>-. A=B) §.

Define restricted universal quantification. Ender-
ton, p. 22.

df-ral $a H(VezeApVr(zeA—yp))
df-ral $a |- ( A. x e. Aph <> A. x (

Define restricted existential quantification. En-
derton, p. 22.

df-rex $a F(JozcApJx(zeANy))
df-rex $a |- ( E. x e. A ph <> E. x (

Define the universal class. Definition 5.20, p. 21,
of Takeuti and Zaring.

df-v $a FV={z|z=2z}

df-v$a |I-V={x | x=x18.

Define the subclass relationship between two
classes (called the subset relation if the classes
are sets i.e. are not proper). Definition 5.9 of
Takeuti and Zaring, p. 17.



df-ss $a F(AC B~V (zeA—azeB))
df-ss $a |- (A (_B<>A. x (xe. A

Define the union of two classes. Definition 5.6 of
Takeuti and Zaring, p. 16.
df-un $a FH(AUB)={z|(z€AVzeERB)
}

df-un $a |- (Au. B) ={x | (xe. A

Define the intersection of two classes. Definition
5.6 of Takeuti and Zaring, p. 16.
df-in $a H(ANB)={z|(z€ANzEB)
}

df-in $a |- (A i"iB) ={x | (x e.

Define class difference. Definition 5.12 of Takeuti
and Zaring, p. 20. Several notations are used in
the literature; we chose the \ convention instead
of a minus sign to reserve the latter for later use
in, e.g., arithmetic.
df-dif $a F(A\B)={z|(z€AN—z€
B)}

df-dif $a |- (A\NB) ={x | (xe. A

Define the empty or null set. Compare Definition



5.14 of Takeuti and Zaring, p. 20.
df-nul $a F@=(V\V)
df-nul $a |- (/) = (V\NV) §.

Define power class. Definition 5.10 of Takeuti
and Zaring, p. 17, but we also let it apply to
proper classes. (Note that P~ is the symbol for
calligraphic P, the tilde suggesting “curly;” see
Appendix [A])

df-pw $a FPA={z|zCA}

df-pw $a - P A={x | x (_AZ} S

Define the singleton of a class. Definition 7.1 of
Quine, p. 48. It is well-defined for proper classes,
although it is not very meaningful in this case,
where it evaluates to the empty set.

df-sn $a HF{A}={z|z=A}

df-sn $a - {A}r={x | x=A4A1%}8.
Define an unordered pair of classes. Definition
7.1 of Quine, p. 48.

df-pr $a F{A,B}=({A}U{B})

df-pr $a |- { A ,B}=(C{A}u {B



Define an unordered triple of classes. Definition
of Enderton, p. 19.
df-tp $a F{A,B,C}=({A,B}u{C})
df-tp $a |I-{A,B,C}=(C{A,B}

Kuratowski’s ordered pair definition. Definition
9.1 of Quine, p. 58. For proper classes it is not
meaningful but is well-defined for convenience.
(Note that <. stands for ( whereas < stands for
<, and similarly for >. .)
df-op $a H(A,B)={{A},{A,B}}
df-op $a |- <. A, B> ={{A}, {A

Define the union of a class. Definition 5.5, p. 16,
of Takeuti and Zaring.

df-uni $a FUA={z|Jy(zecynycA)}

df-uni $a |- U. A={x | E. y(xe.y
Define the intersection of a class. Definition 7.35,
p. 44, of Takeuti and Zaring.

df-int $a FA={z|Vy(yeA—zecy)

}

df-int $a |- [l A={x | A. y (ye.



Define a transitive class. This should not be
confused with a transitive relation, which is a dif-
ferent concept. Definition from p. 71 of Enderton,
extended to classes.

df-tr $a H(TrA<|JACA)

df-tr $a |- ( Tr A <> U. A (_A) $.

Define a notation for a general binary relation.
Definition 6.18, p. 29, of Takeuti and Zaring,
generalized to arbitrary classes. This definition
is well-defined, although not very meaningful,
when classes A and/or B are proper. The lack
of parentheses (or any other connective) is not
ambiguous since we are defining an atomic wif.
df-br $a FH(AR B« (A,B)YER)
df-br $a |- (AR B <> <. A, B >. e.

Define an abstraction class of ordered pairs. A
special case of Definition 4.16, p. 14, of Takeuti
and Zaring. Note that x, y, and z must be dis-
tinct but that = and y may occur in .

df-opab $a F{(z,y)|e}={z|FxTy(z
=(z,y)N¢)}



df-opab $a |- { <. x, y>. | ph } = {
<.x,y> /\ph) }$.

Define the epsilon relation. Similar to Definition
6.22, p. 30, of Takeuti and Zaring.
df-eprel $a FE={(z,y)|z€ey}
df-eprel $a |- E={<. x, y>. | x e.

Define a founded relation. R is a founded relation
on A iff (if and only if) each nonempty subset
of A has an “R-minimal element.” Similar to
Definition 6.21, p. 30, of Takeuti and Zaring.
df-fr $a F(RFr AVa((zCAAN—z=
g)—=Jy(ycaN(zn{z|z Ry
})=2)))
df-fr $a |- ( R Fr A <> A. x ( ( x (_
E.y(ye.x/\(xii{z ]| zR
Define a well-ordering. R is a well-ordering of
A iff it is founded on A and the elements of A
are pairwise R-comparable. Similar to Definition
6.24(2), p. 30, of Takeuti and Zaring.
df-we $a F(R We A< (R Fr AANVaVy((
reANyeA)—>(x RyVae=yV



yRz))))
df-we $a |- ( R We A <> (R Fr A /\ A.

A/Nye. A) > (xRy\ x=y3\

Define the ordinal predicate, which is true for a
class that is transitive and is well-ordered by the
epsilon relation. Similar to definition on p. 468,
Bell and Machover.

df-ord $a F(Ord A« (Tr ANE We A))
df-ord $a |- ( Ord A <> ( Tr A /\ E We

Define class of all ordinal numbers. An ordinal
number is a set that satisfies the ordinal predicate.
Definition 7.11 of Takeuti and Zaring, p. 38.

df-on $a F On={z|0Ord z}
df-on $a |- On={ x| Ord x } $.

Define the limit ordinal predicate, which is true
for a non-empty ordinal that is not a successor
(i.e. that is the union of itself). Compare Bell
and Machover, p. 471 and Exercise (1), p. 42 of
Takeuti and Zaring.
df-lim $a F(Lim A< ( Ord AN-A=2
NA=UA))



df-1im $a |- ( Lim A <> ( Ord A /\ -.
A) ) s.

Define the successor of a class. Definition 7.22 of
Takeuti and Zaring, p. 41. Our definition is a gen-
eralization to classes, although it is meaningless
when classes are proper.
df-suc $a Fsuc A=(AU{A})
df-suc $a |- suc A= (Au. {A})S.

Define the class of natural numbers. Compare
Bell and Machover, p. 471.
df-om $a Fw={z|(Ord 2 AVy(Lim y—
x€y))}
df-om $a [-om={ x| (Ord x /\ A. ¥y
)} §.
Define the cross product of two classes. Definition
9.11 of Quine, p. 64.
df-xp $a FH(AxB)={(z,y)|(x€ANy
€B)}
df-xp $a |- (A X. B) ={ <. x, vy >
) 8.

Define the domain of a class. Definition 6.5(1) of



Takeuti and Zaring, p. 24.

df-dm $a FdomA={z|Jy(z,y)eA}

df-dm $a |- dom A ={x | E. y<. x, ¥
Define the range of a class. Definition 6.5(2) of
Takeuti and Zaring, p. 24.

df-rn $a FranA={y|Jx(x,y)€A}

df-rn $a [-ran A={y | E. x <. x, ¥y
Define the restriction of a class. Definition 6.6(1)
of Takeuti and Zaring, p. 24.

df-res $a FH(A[B)=(AN(BxV))

df-res $a |- (A |*B) = (A i"i ( BX
Define the image of a class. Definition 6.6(2) of
Takeuti and Zaring, p. 24.

df-ima $a F(A“B)=ran (A[B)

df-ima $a |- (A" B ) =ran (A | B)
Define the composition of two classes. Definition
6.6(3) of Takeuti and Zaring, p. 24.

df-co $a F(AoB)={(z,y)|Iz({(x,2)

EBA(z,y)eA)}
df-co $a |- (A o. B) ={ <. x, vy >



>.e. B/\N<. z,y> e. A) 1} S

Define a relation. Definition 6.4(1) of Takeuti
and Zaring, p. 23.
df-rel $a F(Rel A AC(V xV))
df-rel $a |- ( Rel A <> A (L (VX. V

Define a function. Definition 6.4(4) of Takeuti
and Zaring, p. 24.

df-fun $a F(Fun A< (Rel AAVzI2Vy(

(r,y)eAd—y=2)))
df-fun $a |- ( Fun A <-> ( Rel A /\ A.
, y>. e, A>y=2z))) §.

Define a function with domain. Definition 6.15(1)
of Takeuti and Zaring, p. 27.

df-fn $a F(A Fn B+ (Fun AAdom A=

B))
df-fn $a |- ( A Fn B <-> ( Fun A /\ dom

Define a function with domain and co-domain.
Definition 6.15(3) of Takeuti and Zaring, p. 27.

df-f $a F(F:A— B+ (F Fn AAran F
CB))



df-f $a |- ( F : A ——> B <> ( FFn A /

Define a one-to-one function. Compare Definition
6.15(5) of Takeuti and Zaring, p. 27.

df-f1 $a F(F:A <3 By (F:A—s BA
VydzVe({(z,y)eF—z=2)))

df-f1 $a |- ( F : A -1-1-> B <> ( F :
AL yE. zA. x (<. x,y> e.F -

Define an onto function. Definition 6.15(4) of
Takeuti and Zaring, p. 27.

df-fo $a H(F:A — B+ (F Fn AAran

onto
F=B))
df-fo $a |- ( F : A -onto-> B <-> ( F F
=B ) ) §$.

Define a one-to-one, onto function. Compare
Definition 6.15(6) of Takeuti and Zaring, p. 27.
1- -
df-flo $a F(F:A — Be (F: A3 B
onto
ANF:A > B))
df-fio $a |- ( F : A -1-1-onto-> B <>
/\ F : A -onto-> B ) ) §.



Define the value of a function. This definition
applies to any class and evaluates to the empty
set when it is not meaningful. Note that F*‘A
means the same thing as the more familiar F'(A)
notation for a function’s value at A. The F‘A
notation is common in formal set theory.

df-fv $a F%?‘A)ZU{ﬁl(F“{A})={

df-fv $a |- (F “A) =U. {x | (F"

Define the result of an operation. Here, F' is
an operation on two values (such as + for real
numbers). This is defined for proper classes A
and B even though not meaningful in that case.
However, the definition can be meaningful when
F' is a proper class.

df-opr $a H(A F B)=(F‘(A,B))

df-opr $a |- (AFB) = (F ‘<. A, B



3.5 Tricks of the Trade

In the set.mm database our goal was usually to
conform to modern notation. However in some
cases the relationship to standard textbook lan-
guage may be obscured by several unconventional
devices we used to simplify the development and
to take advantage of the Metamath language.
In this section we will describe some common
conventions used in set.mm.

e The turnstile symbol, F, meaning “it is
provable that,” is the first token of all as-
sertions and hypotheses that aren’t syntax
constructions. This is a standard conven-
tion in logic. (We mentioned this earlier,
but this symbol is bothersome to some peo-
ple without a logic background. It has no
deeper meaning but just provides us with
a way to distinguish syntax constructions
from ordinary mathematical statements.)

e A hypothesis of the form



$e F(p—=Vap)

should be read “assume variable x is (ef-
fectively) not free in wff ¢.” Literally, this
says “assume it is provable that o — Vz ¢.”
This device lets us to avoid the complexities
associated with the standard treatment of
free and bound variables. The footnote on
p. discusses this further.

A statement of one of the forms

$a F(~Vzax=y—...)
$p H(~Ver=y—...)

should be read “if x and y are distinct vari-
ables, then...” This antecedent provides us
with a technical device to avoid the need for
the $d statement early in our development
of predicate calculus, permitting symbol
manipulations to be as conceptually simple
as those in propositional calculus. How-
ever, the $d statement eventually becomes
a requirement, and after that this device is



rarely used.

The statement

$d z vy

should be read “assume x and y are distinct
variables.”

The statement

$d z ¢
should be read “assume x does not occur
in ©.”

The statement
$d z A

should be read “assume variable z does not
occur in class A.”

The restriction and hypothesis group

$d =z A
$d x ¢
$e F(z=A—(pe))



is frequently used in place of explicit sub-
stitution, meaning “assume 1) results from
the proper substitution of A for z in .’
Sometimes “$e - (¢ — Vr1))” is used in-
stead of “$d x1),” which requires only that
x be effectively not free in ¢ but not nec-
essarily absent from it. The use of implicit
substitution is partly a matter of personal
style, although it may make proofs some-
what shorter than would be the case with
explicit substitution.

)

e The hypothesis
$e FA€V
should be read “assume class A is a set (i.e.

exists).” This is a convenient convention
used by Quine.

e The restriction and hypothesis

$d z y
$e F(ye A=V yecA)



should be read “assume variable x is (effec-
tively) not free in class A.”

3.6 A Theorem Sampler

In this section we list some of the more important
theorems that are proved in the set.mm database,
and they illustrate the kinds of things that can
be done with Metamath. While all of these facts
are well-known results in set theory, Metamath
offers the advantage of easily allowing you to
trace their derivation back to axioms. Our intent
here is not to try to explain the details or motiva-
tion; for this we refer you to the textbooks that
are mentioned in the descriptions. (The set.mm
file has bibliographic references for the text ref-
erences.) Their proofs often embody important
concepts you may wish to explore with the Meta-
math program (see Section [3.8). All the symbols
that are used here are defined in Section 3.4l For
brevity we haven’t included the $d restrictions
or $f hypothesis for these theorems; when you



are uncertain consult the set.mm database.

Our first theorem is not very deep but pro-
vides us with a notational device that is fre-
quently used. It allows us to use the expression
“A e V7 as a compact way of saying that class A
exists, i.e. is a set.

Two ways to say “A is a set”: A is a member of
the universe V' if and only if A exists (i.e. there
exists a set equal to A). Theorem 6.9 of Quine,
p. 43.

isset $p F(AeV - Trxax=A)

Next we prove the axioms of standard ZF set
theory that were missing from our axiom system.
From our point of view they are theorems since
they can be derived from the other axioms.

Axiom of Separation (Aussonderung) proved from
the other axioms of ZF set theory. Compare
Exercise 4 of Takeuti and Zaring, p. 22.

inexl.1 $e FAE€V
inex $p FH(ANB)eV



Axiom of the Null Set proved from the other
axioms of ZF set theory. Corollary 5.16 of Takeuti
and Zaring, p. 20.

Oex $p FoeV

The Axiom of Pairing proved from the other
axioms of ZF set theory. Theorem 7.13 of Quine,
p- 51.

prex $p F{A,B}eV

Next we will list some famous or important
theorems that are proved in the set.mm database.
None of them except omex require the Axiom of
Infinity, as you can verify with the show trace_baxc
Metamath command.

The resolution of Russell’s paradox. There exists
no set containing the set of all sets which are
not members of themselves. Proposition 4.14 of
Takeuti and Zaring, p. 14.

ru $p FoJzar={y[-yey}

Cantor’s theorem. No set can be mapped onto its
power set. Compare Theorem 6B(b) of Enderton,



p. 132.

canth.1 $e FA€V
canth $p F-F:A — PA

onto

The Burali-Forti paradox. No set contains all
ordinal numbers. Enderton, p. 194. (Burali-Forti
was one person, not two.)

onprc $p F—-OneV

Peano’s postulates for arithmetic. Proposition
7.30 of Takeuti and Zaring, pp. 42-43. The ob-
jects being described are the members of w i.e.
the natural numbers 0, 1, 2,.... The successor op-
eration suc means “plus one.” peanol says that
0 (which is defined as the empty set) is a natural
number. peano?2 says that if A is a natural num-
ber, so is A + 1. peano3 says that 0 is not the
successor of any natural number. peano4 says
that two natural numbers are equal if and only if
their successors are equal. peano5 is essentially
the same as mathematical induction.

peanol $p FOcw



peano2 $p FH(Acw—sucAcw)
peano3 $p F(Acw—-sucA=0)

peanod $p F((AcwABecew)—(sucA=
sucB+A=B))

peano5 $p F((@e€AANVrew(xe A—suc
r€A))—HwCA)

Finite Induction (mathematical induction). The
first hypothesis is the basis and the second is
the induction hypothesis. Theorem Schema 22
of Suppes, p. 136.

findes.1 $e FH[@/z]yp

findes.2 $e F(zcw—(p—[sucz/z]y)

)

findes $p F(z€EwWw—y)

Transfinite Induction with explicit substitution.
The first hypothesis is the basis, the second is
the induction hypothesis for successors, and the
third is the induction hypothesis for limit ordinals.
Theorem Schema 4 of Suppes, p. 197.

tfindes.1 $e H[@ /x|



tfindes.2 $e F(z€On— (¢ —[sucz /z]

©))

tfindes.3 $e F(Limy— (Vzeyp—|y/

z]p))
tfindes $p F(z€On—p)

Principle of Transfinite Recursion. Theorem 7.41
of Takeuti and Zaring, p. 47. Transfinite recur-
sion is the key theorem that allows arithmetic of
ordinals to be rigorously defined, and has many
other important uses as well. Hypotheses tfr.1
and tfr.2 specify a certain (proper) class F'. The
complicated definition of F' is not important in
itself; what is important is that there be such
an F' with the required properties, and we show
this by displaying F' explicitly. tfr1l states that
F'is a function whose domain is the set of ordi-
nal numbers. tfr2 states that any value of F'
is completely determined by its previous values
and the values of an auxiliary function, G. tfr3
states that F' is unique, i.e. it is the only func-
tion that satisfies tfrl and tfr2. Note that f
is an individual variable like x and y; it is just a



mnemonic to remind us that A is a collection of
functions.
tfr.1 $e FA={f|dz€On(fFnzAVye
e(fy)=(G(fly)))}
tfr.2 $e FF=JA
tfrl $p FFFnOn
tfr2 $p H(2€0n— (F'z)=(G‘'(Flz))
)
tfr3 $p F((BFnOnAVzeOn(B‘z)=(
G‘(Blz)))—»B=F)

The existence of omega (the class of natural num-
bers). Axiom 7 of Takeuti and Zaring, p. 43.
(This is the only theorem in this section requiring
the Axiom of Infinity.)

omex $p FweV

3.7 Axioms for Real and Con
plex Numbers

This section presents the axioms for real and
complex numbers. Analysis textbooks implicitly



or explicity use these axioms or their equivalents
are used as their starting point. In the database
set.mm, we define real and complex numbers as
(rather complicated) specific sets and derive the
these axioms as theorems from the axioms of
ZF set theory, using a method called Dedekind
cuts. We omit the details of this construction,
which you can follow if you wish using the set .mm
database in conjunction with the textbooks ref-
erenced therein. The construction is actually
unimportant other than to show that sets exist
that satisfy the axioms, and thus that the ax-
ioms are consistent if ZF set theory is consistent.
When working with real numbers you can think
of them as being the actual sets resulting from
the construction (for definiteness), or you can
think of them as otherwise unspecified sets that
happen to satisfy the axioms.

For the axioms we are given (or postulate) 8
classes: C (the set of complex numbers), R (the
set of real numbers, a subset of C), 0 (zero), 1
(one), i (square root of —1), + (plus), - (times),
and < (less than). Subtraction and division are



defined terms and are not part of the axioms; for
their definitions see set.mm.

Note that the notation (A+ B) (and similarly
(A - B)) specifies a class called an operation, and
is the function value of the class + at ordered
pair (A, B). An operation is defined by statement
df-opr on p.[206] The notation A < B specifies a
wif called a binary relation and means (A, B) € <,
as defined by statement df-br on p. [199]

Our set of 8 given classes is assumed to satisfy
the following 28 axioms.

1. The class of complex numbers is a set.
axcnex $p FCeV
2. The real numbers are a subset of the complex
numbers.
axresscn $p FRCC
3. Zero is a real number.
axOre $p FO€R
4. One is a real number.
axlre $p F1eR
5. The imaginary number 7 is a complex number.
axicn $p FieC



6. Complex numbers are closed under addition.
axaddcl $p H((A€CABeC)—(A+B)
eC)
7. Real numbers are closed under addition.
axaddrcl $p F((A€RABeR)—(A+B
JER)
8. Complex numbers are closed under multipli-
cation.
axmulcl $p H((A€CABeC)—(A-B)
eC)
9. Real numbers are closed under multiplication.
axmulrcl $p F((A€eRABeR)—(A-B)
€R)
10. Addition of complex numbers is commutative.
axaddcom $p F((A€CABeC)—(A+B
)=(B+A))
11. Multiplication of complex numbers is com-
mutative.
axmulcom $p FH((A€CABeC)—(A-B)
=(B-4))
12. Addition of complex numbers is associative.
axaddass $p F((A€CABeCACeC)—
((A+B)+C)=(A+(B+



¢)))

13. Multiplication of complex numbers is asso-
ciative.
axmulass $p F((A€CABeCACeC)—
((A-B)-C)=(A-(B-C)))
14. Multiplication distributes over addition for
complex numbers.
axdistr $p F((A€CABeCACeC)—(
A-(B+C))=((A-B)+(A-
¢)))
15. One and zero are distinct.
axlne0 $p H1#0
16. Zero is an identity element for addition.
ax0id $p F(A€C—(A+0)=A)
17. One is an identity element for multiplication.
axlid $p HFH(AeC—(A-1)=A)
18. Every complex number has a negative.
axnegex $p FH(A€C—-3JzxeC(A+2)=0
)
19. Every nonzero complex number has a recip-

rocal.
axrecex $p FH(A€C—(A#0—-JxeC(
A-z)=1))



20. Every real number has a negative.
axrnegex $p F(A€ER—JzeR(A+x)=
0)
21. Every nonzero real number has a reciprocal.
axrrecex $p F(AER—- (A#0—-JzeR(
A-z)=1))
22. The square of i equals —1 (expressed as
i-squared plus 1 is 0).
axi2ml $p H((i-i)+1)=0
23. Ordering on reals satisfies strict trichotomy.
axlttri $p H((A€RABeR)—(A<B
—~+-(A=BVB<A)))
24. Ordering on reals is transitive.
axlttrn $p F((AERABERACER) —(
(A<BAB<(C)—=A<(C))
25. Ordering on reals is preserved after addition
to both sides.
axltadd $p F((A€ERABeRACER)—(
A<B—=(C+A)<(C+B)))
26. The product of two positive reals is positive.
axmulgtO $p F((A€RABeR)—((0<
ANO<B)—0<(A-B)))
27. A complex number can be expressed in terms



of two reals.
axcnre $p F(A€eC—dreRIyeRA=(
4+ (y-i)))
28. A non-empty, bounded-above set of reals has
a supremunmn.
axsup $p F((ACRAA#SANTzeRVye
Ay<z)—drzeR(VyeA-z<
yAVyeR(y<zx—3z€Ay<z)

)

This completes the set of axioms for real and
complex numbers. You may wish to look at how
subtraction, division, and decimal numbers are
defined in set.mm, and for fun look at the proof
of 2+ 2 =4 (theorem 2p2e4 in set.mm).

In set.mm we define the non-negative integers
N, the integers Z, and the rationals QQ as subsets
of R. This leads the nice inclusion NC Z C Q C
R C C, giving us a uniform framework in which,
for example, a property such as commutativity of
complex number addition automatically applies
to integers. The natural numbers N are different
from the set w we defined earlier, but both satisfy



Peano’s postulates.

Complex Number Axioms in Analysis Texts

Most analysis texts construct complex numbers
as ordered pairs of reals, leading to construction-
dependent properties that satisfy these axioms
but are not stated in their pure form. (This is
also done in set.mm but our axioms are extracted
from that construction.) Other texts will simply
state that R is a “complete ordered subfield of C,”
leading to redundant axioms when this phrase
is completely expanded out. In fact I have not
seen a text with the axioms in the explicit form
above. It is possible that one or more of the
axioms above are redundant or could be made
weaker; if you discover an improvement, please let
me know, and I will properly acknowledge your
contribution. Update (Feb. 2005): The third
axiom, “0 is a real number,” is redundant; see
the http://metamath.org web site for details.


http://metamath.org

3.8 Exploring the Set The-
ory Database

At this point you may wish to study the set.mm
file in more detail. Pay particular attention to
the assumptions needed to define wifs (which are
not included above), the variable types ($£ state-
ments), and the definitions that are introduced.
Start with some simple theorems in propositional
calculus, making sure you understand in detail
each step of a proof. Once you get past the first
few proofs and become familiar with the Meta-
math language, any part of the set.mm database
will be as easy to follow, step by step, as any
other part—you won’t have to undergo a “quan-
tum leap” in mathematical sophistication to be
able to follow a deep proof in set theory.

Next, you may want to explore how con-
cepts such as natural numbers are defined and
described. This is probably best done in conjunc-
tion with standard set theory textbooks, which
can help give you a higher-level understanding.



The set.mm database provides references that
will get you started. From there, you will be on
your way towards a very deep, rigorous under-
standing of abstract mathematics.

The Metamath program can help you peruse
a Metamath database, whether you are trying
to figure out how a certain step follows in a
proof or just have a general curiosity. We will go
through some examples of the commands, using
the set.mm database provided with the Meta-
math software. These should help get you started.
See Chapter |5| for a more detailed description of
the commands. Note that we have included the
full spelling of all commands to prevent ambi-
guity with future commands. In practice you
may type just the characters needed to specify
each command keyword unambiguously, often
just one or two characters per keyword, and you
don’t need to type them in upper case.

First run the Metamath program as described
earlier. You should see the MM> prompt. Read in
the set.mm file:



MM> read set.mm

Reading source file "set.mm"...

73689 lines (3543983 characters) were
read from "set.mm".

The source has 21443 statements; 417
are $a and 5989 are $p.

No errors were found. However,
proofs were not checked.

Type VERIFY PROOF * if you want to
check them.

Let’s check the database integrity. This may
take a minute or two to run if your computer is
slow.

MM> verify proof x*

0 10% 20% 30% 40% 50% 60% 70%
80% 90% 100%

A1l proofs in the database were
verified in 2.84 s.

No errors were reported, so every proof is
correct.

You need to know the names (labels) of the-
orems before you can look at them. Often just
examining the database file(s) with a text editor



is the best approach. In set.mm there are many
detailed comments, especially near the beginning,
that can help guide you. The search command
in the Metamath program is also handy. The
comments qualifier will list the statements whose
associated comment (the one immediately before
it) contain a string you give it. For example,
if you are studying Enderton’s Elements of Set
Theory [16] you may want to see the references to
it in the database. The search string enderton
is not case sensitive. (This will not show you
all the database theorems that are in Enderton’s
book because there is usually only one citation
for a given theorem, which may appear in several
textbooks.)

MM> search * "enderton" / comments

3332 df-ral $a "...niversal
quantification. Enderton, p. 22."
3333 df-rex $a "...stential
quantification. Enderton, p. 22."
4828 df-tp $a "...of classes.
Definition of Enderton, p. 19."
5200 ssuniss $p "...nd union.

Exercise 5 of Enderton, p. 26."



5217 opeluu $p "...air belongs. Lemma
3D of Enderton, p. 41."

(etc.)

Or you may want to see what theorems have
something to do with conjunction (logical AND).
The quotes around the search string are optional
when there’s no ambiguity.

MM> search * conjunction / comments

634 wa $a "...wff definition to
include conjunction (’and’)."

636 df-an $a "Define conjunction
(’and’) ."

654 iman $p "Express implication in
terms of conjunction."

655 annim $p "Express conjunction in
terms of implication."

687 pm3.2 $p "... antecedents with
conjunction. Theorem *..."

7561 anor $p "Conjunction in terms of
disjunction (de Morg..."

(etc.)



Now we will start to look at some details.
Let’s look at the first axiom of propositional
calculus.

MM> show statement ax-1/full

MM> sh st ax-1/full

Statement 19 is located on line 881
of the file "set.mm".

"Axiom _Simp_. Axiom Al of
[Margaris] p. 49. One of the 3

axioms of propositional calculus.
The 3 axioms are also

19 ax-1 $a |- ( ph -> ( ps -> ph ) )
$.

Its mandatory hypotheses in RPN order
are:

wph $f wff ph $.
wps $f wff ps $.
The statement and its hypotheses

require the variables: ph
ps
The variables it contains are: ph ps

Compare this to ax-1 on p. You can see
that the symbol ph is the ASCII notation for ¢,
etc. To see the mathematical symbols for any



expression you may typeset it in IXTEX (type help
tex for instructions) or, easier, just use a text
editor to look at the comments where symbols are
first introduced in set.mm. The hypotheses wph
and wps required by ax-1 mean that variables
ph and ps must be wifs.

Next we’ll pick a simple theorem of proposi-
tional calculus, the Principle of Identity, which
is proved directly from the axioms. We'll look at
the statement then its proof.

MM> show statement id1/full

Statement 36 is located on line 968
of the file "set.mm".

"Principle of identity. Theorem
*¥2.08 of Whitehead and
Russell. This version is proved

directly from the axioms
for demonstration purposes."

idi $p |- ( ph -> ph ) $= ... $.
Its mandatory hypotheses in RPN order
are:
wph $f wff ph $.
Its optional hypotheses are: wps wch
wth wet

The statement and its hypotheses



require the variables: ph
These additional variables are

allowed in its proof: ps ch
th et
The variables it contains are: ph

The optional variables ps, ch, etc. are avail-
able for use in a proof of this statement if we
wish, and were we to do so we would make use
of optional hypotheses wps, wch, etc. (See Sec-
tion for the meaning of “optional hypothe-
sis.”) The reason these show up in the statement
display is that statement id1 happens to be in
their scope (see Section for the definition
of “scope”), but in fact in propositional calculus
we will never make use of optional hypotheses or
variables. This becomes important after quanti-
fiers are introduced, where “dummy” variables
are often needed in the middle of a proof.

Let’s look at the proof of statement id1. We'll
suppress the “non-essential” steps that construct
the wits.

MM> show proof
idl/essential/lemmon/renumber



1 ax-2 $a |- ( ( ph -> ( (
ph -> ph ) -> ph ) ) ->
¢ ¢ ph => ( ph
-> ph ) ) ->
( ph -> ph )

2 ax-1 $a |- ( ph -> (C ( ph
-> ph ) -> ph ) )
3 1,2 ax-mp $a |- ( ( ph -> ( ph

-> ph ) ) -> ( ph -> ph

4 ax-1 $a |- ( ph -> ( ph

-> ph ) )

5 3,4 ax-mp $a |- ( ph -> ph )

If you have read Section [2.3] you’ll know how
to interpret this proof. Step 2, for example, is an
application of axiom ax-1. This proof is identical
to the one in Hamilton’s Logic for Mathemati-
cians [19, p. 32].

You may want to look at what substitutions
are made into ax-1 to arrive at step 2. The



command to do this needs to know the “real”

step number, so we’ll display the proof again
without the renumber qualifier.

MM> show proof idl/lemmon/essential
18 ax-2 $a |- C ( ph > ( (
ph -> ph ) -> ph ) ) ->
¢ ¢ ph -> ( ph
-> ph ) ) ->
( ph -> ph )

21 ax-1 $a

-> ph ) -> ph ) )
22 18,21 ax-mp $a |-

|- ¢ ph -> (C ( ph

( ¢ ph => ( ph
->ph ) ) -> ( ph -> ph

25 ax-1 $a |- ( ph -> ( ph
-> ph ) )

26 22,25 ax-mp $a |- ( ph -> ph )

The “real” step number is 21. Let’s look at
its details.

MM> show proof idl /detailed_step 21



Proof step 21: min=ax-1 $a |- ( ph
-> ( ( ph => ph ) -> ph )
)
This step assigns source "ax-1" ($a)
to target "min" ($e).
The source assertion requires the
hypotheses "wph" ($f, step
19) and "wps" ($f, step 20). The
parent assertion of the
target hypothesis is "ax-mp" ($a,
step 22).
The source assertion before
substitution was:
ax-1 $a |- ( ph -> ( ps -> ph ) )
The following substitutions were made
to the source
assertion:
Variable Substituted with
ph ph
ps ( ph -> ph )
The target hypothesis before
substitution was:
min $e |- ph
The following substitution was made
to the target hypothesis:
Variable Substituted with
ph ( ph -> ( ( ph -> ph )



-> ph ) )

This shows the substitutions made to the
variables in ax-1. References are made to steps
19 and 20 which are not shown in our proof
display. To see these steps, you can display the
proof without the essential qualifier.

Let’s look at a slightly more advanced proof of
propositional calculus. Note that /\ is the sym-
bol for A (logical AND, also called conjunction).

MM> show statement prth/full
Statement 1521 is located on 1line
4730 of the file "set.mm".
"Theorem *3.47 of Whitehead and
Russell, called ’praeclarum
theorema’ by Leibniz."
prth $p I- C ¢ (. ph -> ps ) /\ ( ch
-> th ) ) -> ( ( ph /\
ch ) -> (ps /\ th ) ) ) $=
$.
Its mandatory hypotheses in RPN order
are:
wph $f wff ph $.
wps $f wff ps $.
wch $f wff ch $.



wth $f wff th $.

Its optional hypotheses are: wet

The statement and its hypotheses
require the variables: ©ph

ps ch th

These additional variables are
allowed in its proof: et

The variables it contains are: ph ps
ch th

MM> show proof
prth/essential/lemmon/renumber

1 pm3.2 $p |- ( ps -> ( th
-> ( ps /\ th ) ) )
2 1 syl3dt $p I- ( ps -> ( ( ch

->th ) -> ( ch -> ( ps

3 2 syl3 $p |- ( ( ph -> ps )
-> ( ph -> ( ( ch -> th
) -> ( ch
_>(



3 com23
-> ( ( ch ->

4 impa

> /\ ( ch ->
impexp

) => ( ps /\
5,6 sylibr

> /N ( ch >

$p 1- (C (
th ) -> (
$p 1- (C (
th ) ) ->
$p - (C (
th ) ) <->
$p - (C (
th ) ) ->

ph

ph

ps /\
th ) )
) ) )
-> ps )

-> ( ch
-> ( ps
/\ th )
) ) ) )
ph -> ps

ph > (
ch -> (
ps /\
th ) )

) )

ph /\ ch

ph > (
ch -> (
ps /\
th ) )

) )

ph -> ps

( ph /\
ch ) ->



( ps /\
th ) ) )

There are references to a lot of unfamiliar
statements. To see what they are, you may type
the following:

MM> show proof
prth/statement_summary/essential

Summary of statements used in the
proof of "prth":

Statement "syl3" is located on 1line
355 of the file "set.mm".

"Inference adding common antecedents
in an implication."

syl3.1 $e |- ( ph -> ps ) $.
syl3 $p |- ( ( ch =-> ph ) -> ( ch
->ps ) ) $= ... §.

Statement "syl3dt" is located on line
438 of the file

"set.mm".
"Deduction adding nested antecedents."
syl3dt.1 $e |- ( ph -> ( ps -> ch )
) 3.
syl3dt $p |- ( ph -> ( ( th -> ps )

-> ( th -> ch ) ) ) $=



(etc.)

Of course you can look at each of these state-
ments and their proofs, and so on, back to the
axioms of propositional calculus if you wish.

The search command is useful for finding
statements when you know all or part of their con-
tents. The following example finds all statements
containing ph -> ps followed by ch -> th. The
$* is a wildcard that matches anything; the $
before the * prevents conflicts with math symbol
token names. The * after SEARCH is also a wild-
card that in this case means “match any label.”

MM> SEARCH * "ph -> ps $* ch -> th"
1521 prth $p |- C C ( ph => ps ) /\ (
ch -> th ) ) -> ( ( ph
/\ ch ) -> (Cps /\ th ) ) )
1522 pm3.48 $p |- ( ( ( ph -> ps ) /\
(ch -> th ) ) -> ( (
ph \/ ch ) -> ( ps \/ th ) ) )



1739 elimant $p |- ( C ( ph -> ps )
/\ ( ( ps -> ch ) -> ( ph
->th ) ) ) -> ( ph -=> ( ch -> th
) D))

Three statements, prth, pm3.48, and elimant,
were found to match.

To see what axioms and definitions prth ul-
timately depends on for its proof, you can have
the program backtrack through the hierarchy of
theorems and definitions.

MM> show trace_back prth

/essential/axioms

Statement "prth" assumes the
following axioms ($a
statements) :

ax-1 ax-2 ax-3 ax-mp df-bi df-an

Note that the 3 axioms of propositional cal-
culus and the modus ponens rule are needed (as
expected); in addition, there are a couple of defi-
nitions that are used along the way. Note that
Metamath makes no distinction between axioms
and definitions. In set.mm they have been distin-
guished artificially by prefixing their labels with



ax- and df- respectively. For example, df-an
defines conjunction (logical AND), which is repre-
sented by the symbol /\. Section discusses
the philosophy of definitions, and the Metamath
language takes a particularly simple, conserva-
tive approach by using the $a statement for both
axioms and definitions.

You can also have the program compute how
many steps a proof has if we were to follow it all
the way back to $a statements.

MM> show trace_back prth

/essential/count_steps
The statement’s actual proof has 5

steps. Backtracking, a
total of 55 different subtheorems are
used. The statement

and subtheorems have a total of 196
actual steps. If

subtheorems used only once were
eliminated, there would be a

total of 25 subtheorems, and the
statement and subtheorems

would have a total of 143 steps. The
maximum path length is

20. A longest path is: prth <-



imp4b <- imp4a <- impexp <-

imbili <- impbi <- bi3 <- expi <-
expt <- pm3.2im <- con2d <-

con2 <- nega <- pm2.18 <- pm2.43i <-
pm2 .43 <- pm2.27 <-

coml2 <- syl <- ali <- ali.l

This tells us that we would have to inspect
196 steps if we want to verify the proof completely
starting from the axioms. A few more statistics
are also shown. There are one or more paths back
to axioms that are the longest; this command
ferrets out one of them and shows it to you. There
may be a sense in which the longest path length
is related to how “deep” theorem is.

Finally, we might be curious about what proofs
depend the theorem prth. If it is never used later
on, we could eliminate it as redundant if it has
no intrinsic interest by itself.

MM> show usage prth
Statement "prth" is directly

referenced in the proofs of 4

statements:

animl2d mo 2mo ssxp tfrlemb
climunii climadd



Thus prth is used by 7 proofs, and indirectly
by many more that make use of those proofs, and
so on. (The /recursive qualifier gives you all
of them.)

3.8.1 A Note on “Compact” Proof
Format

The present version of Metamath (0.07.30) will
display proofs in a “compact” format whenever
the proof is stored in compressed format in the
database. It may be be slightly confusing unless
you know how to interpret it. (A future version
may eliminate this format from displays.) For
example, if you display the complete proof of
theorem id1 it will start off as follows:

MM> show proof idl /lemmon/all

1 wph $f wff ph

2 wph $f wff ph

3 wph $f wff ph

4 2,3 wi ©1: $a wff ( ph -> ph )

5 1,4 wi @2: $a wff ( ph -> ( ph
-> ph ) )

6 @1 $a wff ( ph -> ph )



etc.

Step 4 has a “local label,” @1, assigned to it.
Later on, at step 6, the label @1 is referenced
instead of displaying the explicit proof for that
step. This technique takes advantage of the fact
that steps in a proof often repeat, especially dur-
ing the construction of wffs. The compact format
reduces the number of steps in the proof display
and may actually be preferred by some people,
which is one reason that it is still displayed by
the program.

If you want to see the normal format with the
“true” step numbers, you can use the following
workaround:

MM> save proof idl /normal

The proof of "idl" has been
reformatted and saved internally.

Remember to use WRITE SOURCE to save
it permanently.

MM> show proof idl /lemmon/all

1 wph $f wff ph

2 wph $f wff ph

3 wph $f wff ph



4 2,3 wi $a wff ( ph -> ph )

5 1,4 wi $a wif ( ph -> ( ph
-> ph ) )
6 wph $f wff ph
7 wph $f wff ph
8 6,7 wi $a wff ( ph -> ph )
ete.

Note that the original 6 steps are now 8 steps.
However, the format is now the same as that
described in Chapter [2]



Chapter 4

The Metamath
Language

Thus mathematics may be defined as
the subject in which we never know
what we are talking about, nor whether
what we are saying is true.

BERTRAND RusseLi[l

152, p. 84]



Probably the most striking feature of the
Metamath language is its almost complete ab-
sence of hard-wired syntax. Metamath does not
understand any mathematics or logic other than
that needed to construct finite sequences of sym-
bols according to a small set of simple, built-in
rules. The only rule it uses in a proof is the
substitution of an expression (symbol sequence)
for a variable, subject to a simple constraint to
prevent bound-variable clashes. The primitive
notions built into Metamath involve the simple
manipulation of finite objects (symbols) that we
as humans can easily visualize and that com-
puters can easily deal with. They seem to be
just about the simplest notions possible that are
required to do standard mathematics.

This chapter serves as a reference manual for
the Metamath language. It covers the tedious
technical details of the language, some of which
you may wish to skim in a first reading. On the
other hand, you should pay close attention to
the defined terms in boldface; they have precise
meanings that are important to keep in mind



for later understanding. It may be best to first
become familiar with the examples in Chapter
to gain some motivation for the language.

If you have some knowledge of set theory, you
may wish to study this chapter in conjunction
with the formal set-theoretical description of the
Metamath language in Appendix [C]

We will use the name “Metamath” to mean
either the Metamath computer language or the
Metamath software associated with the computer
language. We will not distinguish these two when
the context is clear.

The next section contains the complete spec-
ification of the Metamath languageﬂ It serves
as an authoritative reference and presents the

2The current version of the Metamath program
(0.07.30) implements an older specification with a slightly
more general syntax than described here. Among the
differences: missing white space around keyword tokens
is sometimes tolerated, and a variable may be used be-
fore its type is specified by a $f statement (this “feature”
should never be used in practice). A future version of the
program is expected to conform to the current specifica-
tion.



syntax in enough detail to write a parser and
proof verifier. The specification is terse and it is
probably hard to learn the language directly from
it, but we include it here for those impatient peo-
ple who prefer to see everything up front before
looking at verbose expository material. Later sec-
tions explain this material and provide examples.
We will repeat the definitions in those sections,
and you may skip the next section at first reading
and proceed to Section [£.2] (p. [260)). You may
want to come back to it to clarify any fine points.

4.1 Specification of the Meta
math Language

Sometimes one has to say difficult
things, but one ought to say them as
simply as one knows how.

G. H. HARDYE

3As quoted in [14], p. 273



4.1.1 Preliminaries

A Metamath database is built up from a top-
level source file together with any source files that
are brought in through file inclusion commands
(see below). The only characters that are allowed
to appear in a Metamath source file are the 94
printable characters on standard Ascirt keyboards,
which are digits, upper and lower case letters, and
the following 32 special characters

CTre# $ % & x () - L=+

L1 {5 :«>", . <>/ 7\
plus the following non-printable (white space)
characters: space, tab, carriage return, line feed,
and form feed. We will use typewriter font to
display the printable characters.

A Metamath database consists of a sequence
of three kinds of tokens separated by white
space (which is any sequence of one or more
white space characters). The set of keyword
tokens is ${, $}, $c, $v, $f, $e, $d, $a, $p, $.,
$=, $( $), $[, and $]1. The last four are called
auxiliary or preprocessing keywords. A label



token consists of any combination of letters, dig-
its, and the characters hyphen, underscore, and
period. A math symbol token may consist of
any combination of the 93 printable standard
AScCII characters other than $ . All tokens are
case-sensitive.

4.1.2 Preprocessing

$( begins a comment and $) ends a comment.
Comments may contain any of the 94 printable
characters and white space, except they may
not contain the 2-character sequences $( or $).
Comments are ignored (treated like white space)
for the purpose of parsing.

Two special characters inside comments,
and ~, control the typesetting of comments and
are discussed on p. 324l They may be ignored
for the purpose of parsing.

A file inclusion command consists of $[
followed by a file name followed by $]. The
file name may not contain a $ or white space.
The file must exist. The case-sensitivity of its

4



name follows the conventions of the operating
system. The contents of the file replace the in-
clusion command. Included files may include
other files. Only the first reference to a given
file is included; any later references to the same
file (whether in the top-level file or in included
files) cause the inclusion command to be ignored
(treated like white space). A file self-reference is
ignored, as is any reference to the top-level file.
Like all tokens, the $(, $), $[, and $] key-
words must be surrounded by white space.

4.1.3 Basic Syntax

After preprocessing, a database will consist of a
sequence of statements. It may contain only
the statement types defined below. These are the
scoping statements ${ and $}, along with the $c,
$v, $f, $e, $d, $a, and $p statements.

A scoping statement consists only of its
keyword, ${ or $}. ${ begins a block and a
matching $} ends the block. Every ${ must have
a matching $}. Defining it recursively, we say a



block contains a sequence of zero or more tokens
other than ${ and $} and possibly other blocks.
There is an outermost block not bracketed by
${ $}; the end of the outermost block is the end
of the database.

A $v or $c statement consists of the key-
word token $v or $c respectively, followed by one
or more math symbols, followed by $.. These
statements declare the math symbols to be vari-
ables or constants respectively. The same math
symbol may not occur twice in a given $v or $c
statement.

A math symbol becomes active when de-
clared and stays active until the end of the block
in which it is declared. A variable may not be
declared a second time while it is active, but it
may be declared again (as a variable, but not as
a constant) after it becomes inactive. A constant
must be declared in the outermost block and may
not be declared a second time[]

4The rules for redeclaration may become more general
in the future; see footnote on p. [308



A $f statement consists of a label, followed
by $f, followed by an active constant, followed
by an active variable, followed by $.. A $e
statement consists of a label, followed by $e,
followed by an active constant, followed zero or
more active math symbols, followed by $.. A
hypothesis is a $f or $e statement.

A simple $d statement consists of $d, fol-
lowed by two different active variables, followed
by $.. A compound $d statement consists of
$d, followed by three or more variables (all differ-
ent), followed by $.. The order of the variables
in a $d statement is unimportant. A compound
$d statement is equivalent to a set of simple $d
statements, one for each possible pair of vari-
ables occurring in the compound $d statement.
Henceforth in this specification we shall assume
all $d statements are simple. A $d statement
is also called a disjoint (or distinct) variable
restriction.

A 8$a statement consists of a label, followed
by $a, followed by an active constant, followed
by zero or more active math symbols, followed by



$.. A $p statement consists of a label, followed
by $p, followed by an active constant, followed
by a zero or more active math symbols, followed
by $=, followed by a sequence of labels, followed
by $.. An assertion is a $a or $p statement.

A $f, $e, or $d statement is active from the
place it occurs until the end of the block it occurs
in. A $a or $p statement is active from the place
it occurs through the end of the database.

There may not be two active $f statements
containing the same variable. Each variable in a
$e, $a, or $p statement must exist in an active
$f statement ]

Each label token must be unique.

No label token may match any math symbol
token [f]

>This requirement can greatly simplify the unification
algorithm (substitution calculation) required by proof
verification.

6 (Added June 2/, 2006) This restriction did not exist
in earlier versions of this specification. While not theoret-
ically necessary, it is imposed to make it easier to write
certain parsers.




The set of mandatory variables associated
with an assertion is the set of (zero or more) vari-
ables in the assertion and in any active $e state-
ments. The (possibly empty) set of mandatory
hypotheses is the set of all active $f statements
containing mandatory variables, together with
all active $e statements.

The set of mandatory $d statements as-
sociated with an assertion are those active $d
statements whose variables are both among the
assertion’s mandatory variables.

4.1.4 Proof Verification

The sequence of labels between the $= and $.
tokens in a $p statement is a proof. Each label
in a proof must be the label of an active statement
other than the $p statement itself; thus a label
must refer either to an active hypothesis of the
$p statement or to an earlier assertion.

An expression is a sequence of math sym-
bols. A substitution map associates a set of
variables with a set of expressions. It is accept-



able for a variable to be mapped to an expression
containing it. A substitution is the simultane-
ous replacement of all variables in one or more
expressions with the expressions that the vari-
ables map to.

A proof is scanned in order of its label se-
quence. If the label refers to an active hypoth-
esis, the expression in the hypothesis is pushed
onto a stack. If the label refers to an assertion, a
(unique) substitution must exist that, when made
to the mandatory hypotheses of the referenced
assertion, causes them to match the topmost (i.e.
most recent) entries of the stack, in order of oc-
currence of the mandatory hypotheses, with the
topmost stack entry matching the last mandatory
hypothesis of the referenced assertion. As many
stack entries as there are mandatory hypotheses
are then popped from the stack. The same sub-
stitution is made to the referenced assertion, and
the result is pushed onto the stack. After the last
label in the proof is processed, the stack must
have a single entry that matches the expression
in the $p statement containing the proof.



A proof may contain a ? in place of a label
to indicate an unknown step (Section [1.4.5)). A
proof verifier may ignore any proof containing
? but should warn the user that the proof is
incomplete.

A compressed proof is an alternate proof
notation described in Appendix [B} also see refer-
ences to “compressed proof” in the Index. Com-
pressed proofs are a Metamath language exten-
sion which a complete proof verifier should be
able to parse and verify.

Verifying Disjoint Variable Restrictions

Each substitution made in a proof must be checked
to verify that any disjoint variable restrictions
are satisfied, as follows.

If two variables replaced by a substitution ex-
ist in a mandatory $d statement of the assertion
referenced, the two expressions resulting from the
substitution must meet satisfy the following con-
ditions. First, the two expressions must have no
variables in common. Second, each possible pair



of variables, one from each expression, must exist
in an active $d statement of the $p statement
containing the proof.

This ends the specification of the Metamath
language.

4.2 The Basic Keywords

Our expository material begins here.

Like most computer languages, Metamath
takes its input from one or more source files
which contain characters expressed in the stan-
dard Ascil (American Standard for Coded In-
formation Interchange) code for computers. A
source file consists of a series of tokens, which
are strings of printable characters (from the set of
94 shown on p. separated by white space
(spaces, tabs, carriage returns, line feeds, and
form feeds). Any string consisting only of these
characters is treated the same as a single space.
The printable characters that Metamath recog-
nizes are the 94 characters on standard ASCII



keyboards.

Metamath has the ability to join several files
together to form its input (Section . We
call the aggregate contents of all the files after
they have been joined together a database to
distinguish it from an individual source file. The
tokens in a database consist of keywords, which
are built into the language, together with two
kinds of user-defined tokens called labels and
math symbols. (Often we will simply say sym-
bol instead of math symbol for brevity). The set
of basic keywords is $c, $v, $e, $f, $d, $a, $p,
$=, $., ${, and $}. This is the complete set of
syntactical elements of what we call the basic
language of Metamath, and with them you can
express all of the mathematics that were intended
by the design of Metamath. You should make
it a point to become very familiar with them.
Table lists the basic keywords along with a
brief description of their functions. For now, this
description will give you only a vague notion of
what the keywords are for; later we will describe
the keywords in detail.



Table 4.1: Summary of the basic Metamath key-

words

’ Keyword \ Description

$c Constant symbol declaration

$v Variable symbol declaration

$d Disjoint variable restriction

$f Variable-type (“floating”) hypothesis
$e Logical (“essential”) hypothesis
$a Axiomatic assertion

$p Provable assertion

$= Start of proof in $p statement

$. End of the above statement types
${ Start of block

$} End of block




There are some additional keywords, called
auxiliary keywords that help make Metamath
more practical. These are part of the extended
language. They provide you with a means to
put comments into a Metamath source file and
reference other source files. We will introduce
these in later sections. Table summarizes
them so that you can recognize them now if you
want to peruse some source files while learning
the basic keywords.

Table 4.2: Auxiliary Metamath keywords

] Keyword \ Description ‘

$( Start of comment

$) End of comment

$L[ Start of included source file name
$] End of included source file name

Unlike those in some computer languages,
the keywords are short two-character sequences
rather than English-like words. While this may
make them slightly more difficult to remember at



first, their brevity allows them to blend in with
the mathematics being described, not distract
from it, like punctuation marks.

4.2.1 User-Defined Tokens

As you may have noticed, all keywords begin
with the $ character. This mundane monetary
symbol is not ordinarily used in higher mathe-
matics (outside of grant proposals), so we have
appropriated it to distinguish the Metamath key-
words from ordinary mathematical symbols. The
$ character is thus considered special and may
not be used as a character in a user-defined token.
All tokens and keywords are case-sensitive; for
example, n is considered to be a different charac-
ter from N. Case-sensitivity makes the available
ASCII character set as rich as possible.

Math Symbol Tokens

Math symbols are tokens used to represent the
symbols that appear in ordinary mathematical



formulas. They may consist of any combination
of the 93 printable AsciI characters other than
$ . Some examples are x, +, (, |-, 1%07&, and
bounded. For readability, it is best to try to
make these look as similar to actual mathematical
symbols as possible, within the constraints of the
ASCII character set, in order to make the resulting
mathematical expressions more readable.

In the Metamath language, you express ordi-
nary mathematical formulas and statements as
sequences of math symbols such as 2 + 2 = 4
(five symbols, all constants).lz] They may even
be English sentences, as in E is closed and
bounded (five symbols)—here E would be a vari-
able and the other four symbols constants. In
principle, a Metamath database could be con-
structed to work with almost any unambiguous
English-language mathematical statement, but

"To eliminate ambiguity with other expressions, this
is expressed in the set theory database set.mm as |- (
2 + 2 ) =4 , whose ITEX equivalent is - (2 4 2) = 4.
The F means “is a theorem” and the parentheses allow
explicit associative grouping.



as a practical matter the definitions needed to
provide for all possible syntax variations would
be cumbersome and distracting and possibly have
subtle pitfalls accidentally built in. We gener-
ally recommend that you express mathematical
statements with compact standard mathematical
symbols whenever possible and put their English-
language descriptions in comments. Axioms and
definitions ($a statements) are the only places
where Metamath will not detect an error, and do-
ing this will help reduce the number of definitions
needed.

You are free to use any tokens you like for
math symbols. Appendix [A] recommends token
names to use for symbols in set theory, and we
suggest you adopt these in order to be able to
include the set.mm set theory database in your
database. For printouts, you can convert the
tokens in a database to standard mathemati-
cal symbols with the ETEX typesetting program.
The Metamath command open tex filename pro-
duces output that can be read by KTEX. The
correspondence between tokens and the actual



symbols is made by latexdef statements inside
of a special database comment tagged with $t.
You can edit this comment to change the defi-
nitions or add new ones. Appendix [A] describes
how to do this in more detail.

Label Tokens

Label tokens are used to identify Metamath state-
ments for later reference. Label tokens may con-
tain only letters, digits, and the three characters
period, hyphen, and underscore:

A label is declared by placing it immediately
before the keyword of the statement it identifies.
For example, the label axiom. 1 might be declared
as follows:

axiom.1 $a |- x = x $.

Each $e, $£, $a, and $p statement in a database
must have a label declared for it. No other state-
ment types may have label declarations. Every
label must be unique.



A label (and the statement it identifies) is
referenced by including the label between the
$= and $. keywords in a $p statement. The
sequence of labels between these two keywords is
called a proof. An example of a statement with
a proof that we will encounter later (Section
is

wnew $p wff (s -> Cr -> p ) )
$= ws wr wp w2 w2 $.

You don’t have to know what this means just
yet, but you should know that the label wnew
is declared by this $p statement and that the
labels ws, wr, wp, and w2 are assumed to have
been declared earlier in the database and are
referenced here.

4.2.2 Constants and Variables

An expression is any sequence of math symbols,
possibly empty.

The basic Metamath language has two kinds
of math symbols: constants and variables. In



a Metamath proof, a constant may not be sub-
stituted with any expression. A variable can be
substituted with any expression. This sequence
may include other variables and may even include
the variable being substituted. This substitution
takes place when proofs are verified, and it will
be described in Section .3l The $f statement
(described later in Section is used to specify
the type of a variable (i.e. what kind of variable
it is) and give it a meaning typically associated
with a “metavariable”ff| in ordinary mathematics;
for example, a variable may be specified to be
a wit or well-formed formula (in logic), a set (in
set theory), or a non-negative integer (in number
theory).

8 A metavariable is a variable that ranges over the syn-
tactical elements of the object language being discussed;
for example, one metavariable might represent a variable
of the object language and another metavariable might
represent a formula in the object language.



4.2.3 The $c and $v Declaration
Statements

Constants are introduced or declared with $c
statements, and variables are declared with $v
statements. A simple declaration statement in-
troduces a single constant or variable. Its syntax
is one of the following:

$c math-symbol $.
$v math-symbol $.

The notation math-symbol means any math sym-
bol token.

Some examples of simple declaration state-
ments are:

$c + $.
$c > $.
$c ( 8.
$v x $.
$v y2 $.

The characters in a math symbol being de-
clared are irrelevant to Metamath; for example,



we could declare a right parenthesis to be a vari-

able,
$v ) $.

although this would be unconventional.

A compound declaration statement is a short-
hand for declaring several symbols at once. Its
syntax is one of the following:

$c math-symbol - -- math-symbol $.
$v math-symbol - -- math-symbol $.

Here, the ellipsis (...) means any number of
math-symbols.

An example of a compound declaration state-
ment 1s:

$v x y mu $.

This is equivalent to the three simple declaration
statements

$v x $.
$vys.

$v mu $.



There are certain rules on where in the database
math symbols may be declared, what sections
of the database are aware of them (i.e. where
they are “active”), and when they may be de-
clared more than once. These will be discussed

in Section and specifically on p. [307]

4.2.4 The $d Statement

The $d statement is called a disjoint-variable
restriction. The syntax of the simple version
of this statement is

$d wvariable variable $.

where each variable is a previously declared vari-
able and the two variables are different. (More
specifically, each variable must be an active vari-
able, which means there must be a previous $v
statement whose scope includes the $d state-
ment. These terms will be defined when we dis-
cuss scoping statements in Section [4.2.8])

In ordinary mathematics, formulas may arise
that are true if the variables in them are dis-



tinct, but become false when those variables are
made identical. For example, the formula in logic
Jx x # y, which means “for a given y, there exists
an z that is not equal to y,” is true in most math-
ematical theories (namely all non-trivial theories,
i.e. those that describe more than one individual,
such as arithmetic). However, if we substitute y
with z, we obtain Jz x # x, which is always false,
as it means “there exists something that is not
equal to itself.”’| The $d statement allows you to
specify a restriction that forbids the substitution
of one variable with another. In this case, we
would use the statement

$d x y $.

to specify this restriction.

9If you are a logician, you will recognize this as the
improper substitution of a free variable with a bound vari-
able. Metamath makes no inherent distinction between
free and bound variables; instead, you let Metamath know
what substitutions are permissible by using $d statements
in the right way in your axiom system.



The order in which the variables appear in
a $d statement is not important. We could also
use

$d y x $.

The $d statement is actually more general
than this, as the “disjoint” in its name suggests.
The full meaning is that if any substitution is
made to its two variables (during the course of a
proof that references a $a or $p statement associ-
ated with the $d), the two expressions that result
from the substitution must have no variables in
common. In addition, each possible pair of vari-
ables, one from each expression, must be in a $d
statement associated with the statement being
proved. (This requirement forces the statement
being proved to “inherit” the original disjoint
variable restriction.)

For example, suppose u is a variable. If the
restriction

$d A B $.



has been specified for a theorem referenced in a
proof, we may not substitute A with a + uand B
with b + u because these two symbol sequences
have the variable u in common. Furthermore, if
a and b are variables, we may not substitute A
with a and B with b unless we have also specified
$d a b for the theorem being proved; in other
words, the $d property associated with a pair
of variables must be effectively preserved after
substitution.

The $d statement does not mean “the two
variables may not be substituted with the same
thing,” as you might think at first. For example,
substituting each of A and B in the above example
with identical symbol sequences consisting only
of constants does not cause a disjoint variable
conflict, because two symbol sequences have no
variables in common (since they have no variables,
period). Similarly, a conflict will not occur by
substituting the two variables in a $d statement
with the empty symbol sequence.

The $d statement does not have a direct coun-
terpart in ordinary mathematics, partly because



the variables of Metamath are not really the
same as the variables of ordinary mathematics
but rather are metavariables ranging over them
(as well as over other kinds of symbols and groups
of symbols). Depending on the situation, we may
informally interpret the $d statement in different
ways. Suppose, for example, that x and y are vari-
ables ranging over numbers (more precisely, that
x and y are metavariables ranging over variables
that range over numbers), and that ph (¢) and
ps (¢) are variables (more precisely, metavari-
ables) ranging over formulas. We can make the
following interpretations that correspond to the
informal language of ordinary mathematics:

$d x y $. means “assume z and y are dist

$d x ph $. means “assume z does not occ

$d ph ps $. means “assume ¢ and ¥ have
in common.”



Compound $d Statements

The compound version of the $d statement is a
shorthand for specifying several variables whose
substitutions must be pairwise disjoint. Its syn-
tax is:

$d wvariable --- variable $.

Here, variable represents the token of a previously
declared variable (specifically, an active variable)
and all variables are different. The compound $d
statements is internally broken up by Metamath
into one simple $d statement for each possible
pair of variables in the original $d statement. For
example,

$d wxyz$.
is equivalent to

$d
$d
$d
$d

M o= =5 =5

< N < M
#H hH P &hH



$d x z $.
$d y z $.

Two or more simple $d statements specifying
the same variable pair are internally combined
into a single $d statement. Thus the set of three
statements

$dxy$. $dxy $. $dyx$.
is equivalent to
$d x y $.

Similarly, compound $d statements, after be-
ing internally broken up, internally have their
common variable pairs combined. For example
the set of statements

$d x yA$. $d xy B $.
is equivalent to

$dxy $. $dxAS$. $dy A S$. $dxy$.
$d x B $. $d y B $.



which is equivalent to

$dxy $. $dx A $. $dy A S$. $d xBS.
$d y B $.

Metamath automatically verifies that all $d
restrictions are met whenever it verifies proofs.
$d statements are never referenced directly in
proofs (this is why they do not have labels), but
Metamath is always aware of which ones must
be satisfied (i.e. are active) and will notify you
with an error message if any violation occurs.

To illustrate how Metamath detects a miss-
ing $d statement, we will look at the following
example from the set.mm database.

$d x z §. $d y z $.

$( Theorem to add distinct quantifier
to atomic formula. $)

axl7eq $p I- ( x =y -> A. z x =3 )
$=...

This statement has the obvious requirement
that z must be distinct from x in theorem ax17eq
that states © = y — Vzx = y (well, obvious if
you're a logician, for otherwise we could conclude



r =y — Vxx = y, which is false when free

variables x and y are equal.).
Let’s look at what happens if we edit the

database to comment out this requirement.

$C $d x z $. $§) $d y z $.

$( Theorem to add distinct quantifier
to atomic formula. §)

axl7eq $p |- ( x =y -> A. 2z x =y )
$=...

When it tries to verify the proof, Metamath
will tell you that x and z must be disjoint, because
one of its steps references an axiom or theorem
that has this requirement.

MM> verify proof axl7eq
axl7eq 7Error at statement 1918,
label "ax17eq", type "$p":
vz wal wi vx vy vz ax-12 vx vy
weq vz vx ax-16 vx vy

There is a disjoint variable ($d)
violation at proof step 29.

Assertion "ax-16" requires that
variables "x" and "y" be



disjoint. But "x" was substituted
with "z" and "y" was

substituted with "x". The assertion
being proved, "axl7eq",

does not require that variables "z"
and "x" be disjoint.

We can see the substitutions into ax-16 with
the following command.

MM> show proof axl7eq / detailed_step
29
Proof step 29: pm2.61dd.2=ax-16 $a
|- CA. 2z 2z =x -> (x =
y ->A. zx=y3))
This step assigns source "ax-16" ($a)
to target "pm2.61dd.2"
($e). The source assertion requires
the hypotheses "wph"
($f, step 26), "vx" ($f, step 27),
and "vy" ($f, step 28).
The parent assertion of the target
hypothesis is "pm2.61dd"
($p, step 36).
The source assertion before
substitution was:
ax-16 $a |- ( A. x x =y -> ( ph
-> A. x ph ) )



The following substitutions were made
to the source
assertion:
Variable Substituted with

X zZ
y X
ph Xx =y

The target hypothesis before
substitution was:
pmn2.61dd.2 $e |- ( ph -> ch )
The following substitutions were made
to the target

hypothesis:
Variable Substituted with
ph A, z z = x
ch (x=y3 ->A. zx =1y)

The disjoint variable restrictions of ax-16
can be seen from the show statement command.
The line that begins “Its mandatory disjoint
variable pairs are:...” lists any $d variable
pairs in brackets.

MM> show statement ax-16/full
Statement 3033 is located on line

9338 of the file "set.mm".
"Axiom of Distinct Variables.



ax-16 $a |- ( A. x x =y -> ( ph ->
A. x ph ) ) §$.
Its mandatory hypotheses in RPN order
are:
wph $f wff ph $.
vx $f set x $.
vy $f set y $.
Its mandatory disjoint variable pairs
are: <x,y>
The statement and its hypotheses
require the variables: x y
ph
The variables it contains are: x y ph

Since Metamath will always detect when $d
statements are needed for a proof, you don’t have
to worry too much about forgetting to put one
in; it can always be added if you see the error
message above. If you put in unnecessary $d
statements, the worse that will happen is that
your theorem might not be as general as it could
be, and this may limit its use later on.

On the other hand, when you introduce ax-
ioms ($a statements), you must be very careful to
properly specify the necessary associated $d state-



ments since Metamath has no way of knowing
whether your axioms are correct. For example,
Metamath would have no idea that ax-16, which
we are telling it is an axiom of logic, would lead
to contradictions if we omitted its associated $d
statement.

Comment. You may wonder if it is possi-
ble to develop standard mathematics in the
Metamath language without the $d state-
ment, since it seems like a nuisance that
complicates proof verification. The $d state-
ment is not needed in certain subsets of
mathematics such as propositional calcu-
lus. However, dummy variables and their
associated $d statements are impossible to
avoid in proofs in standard first-order logic
as well as in the variant used in set.mm. In
fact, there is no upper bound to the number
of dummy variables that might be needed
in a proof of a theorem of first-order logic
containing 3 or more variables, as shown
by H. Andréka [43]. A first-order system
that avoids them entirely is given in [34];
the trick there is simply to embed harm-
lessly the necessary dummy variables into
a theorem being proved so that they aren’t



“dummy” anymore, then interpret the re-
sulting longer theorem so as to ignore the
embedded dummy variables. If this inter-
ests you, the system in set.mm obtained
from ax-1 through ax-15 in set.mm, and
deleting ax-16 and ax-17, requires no $d
statements but is logically complete in the
sense described in [34]. This means it can
prove any theorem of first-order logic as long
as we add to the theorem an antecedent that
embeds dummy and any other variables that
must be distinct. In a similar fashion, ax-
ioms for set theory can be devised that do
not require distinct variables (contact me
if interested). Together, these in principle
allow all of mathematics to be developed
under Metamath without a $d statement,
although the length of the resulting theo-
rems will grow as more and more dummy
variables become required in their proofs.

4.2.5 The $f and $e Statements

Metamath has two kinds of hypotheses, the $f or
variable-type hypothesis and the $e or logical



hypothesism The letters £ and e stand for “float-
ing” (roughly meaning used only if relevant) and
“essential” (meaning always used) respectively,
for reasons that will become apparent when we
discuss frames in Section and scoping in
Section [£.2.8] The syntax of these are as follows:

label $f constant variable $.
label $e constant math-symbol - -- math-symbol

$.

A hypothesis must have a label. The expression in
a $e hypothesis consists of a constant math sym-
bol followed by a sequence of zero or more math
symbols. Each math symbol (including constant
and wvariable) must be a previously declared con-
stant or variable. (In addition, each math symbol
must be active, which will be covered when we

108trictly speaking, the $d statement is also a hypothe-
sis, but it is never directly referenced in a proof, so we
call it a restriction rather than a hypothesis to lessen
confusion. The checking for violations of $d restrictions
is automatic and built into Metamath’s proof-checking
algorithm.



discuss scoping statements in Section M) You
use a $f hypothesis to specify the nature or type
of a variable (such as “let x be an integer”) and
use a $e hypothesis to express a logical truth
(such as “assume z is prime”) that must be es-
tablished in order for an assertion requiring it to
also be true.

A variable must have its type specified in a
$f statement before it may be used in a $e, $a,
or $p statement. There may be only one (active)
$f statement for a given variable. (“Active” is
defined in Section 4.2.8])

In ordinary mathematics, theorems are often
expressed in the form “Assume P; then (),” where
@ is a statement that you can derive if you start
with statement PH In the Metamath language,

A stronger version of a theorem like this would be
the single formula P — @ (P implies @) from which the
weaker version above follows by the rule of modus ponens
in logic. We are not discussing this stronger form here.
In the weaker form, we are saying only that if we can
prove P, then we can prove (). In a logician’s language,
if x is the only free variable in P and @, the stronger



you would express mathematical statement P
as a hypothesis (a $¢ Metamath language state-
ment in this case) and statement () as a provable
assertion (a $p statement).

Some examples of hypotheses you might en-
counter in logic and set theory are

stmtl $f wff P $.
stmt2 $f set x $.
stmt3 $e |- (P > Q) $.

Informally, these would be read, “Let P be a
well-formed-formula,” “Let = be an (individual)
variable,” and “Assume we have proved P — ).”
The turnstile symbol F is commonly used in logic
texts to mean “a proof exists for.”

To summarize:

e A $f hypothesis tells Metamath the type
or kind of its variable. It is analogous to a

form is equivalent to Vz(P — Q) (for all =, P implies @),
whereas the weaker form is equivalent to VeP — Vx(@.
The stronger form implies the weaker, but not vice-versa.
To be precise, the weaker form of the theorem is more
properly called an “inference” rather than a theorem.



variable declaration in a computer language
that tells the compiler that a variable is an
integer or a floating-point number.

e The $e hypothesis corresponds to what you
would usually call a “hypothesis” in ordi-
nary mathematics.

Before an assertion ($a or $p statement) can
be referenced in a proof, all of its associated $f
and $e hypotheses (i.e. those $e hypotheses that
are active) must be satisfied (i.e. established by
the proof). The meaning of “associated” (which
we will call mandatory in Section will
become clear when we discuss scoping later.

4.2.6 Assertions ($a and $p State-
ments)

There are two types of assertions, $a statements
(axiomatic assertions) and $p statements (prov-
able assertions). Their syntax is as follows:

label $a constant math-symbol ... math-symbol $.



label $p constant math-symbol ... math-symbol

$= proof $.

An assertion always requires a label. The ex-
pression in an assertion consists of a constant
followed by a sequence of zero or more math
symbols. Each math symbol, including constant,
must be a previously declared constant or vari-
able. (In addition, each math symbol must be
active, which will be covered when we discuss
scoping statements in Section [1.2.8])

A $a statement is usually a definition of syn-
tax (for example, if P and @ are wifs then so
is (P — @)), an axiom of ordinary mathematics
(for example, z = x), or a definition of ordinary
mathematics (for example, z # y means —x = y).
A $p statement is a claim that a certain com-
bination of math symbols follows from previous
assertions and is accompanied by a proof that
demonstrates it.

Assertions can also be referenced in (later)
proofs in order to derive new assertions from
them. The label of an assertion is used to refer



to it in a proof. Section will describe the
proof in detail.

Assertions also provide the primary means for
communicating the mathematical results in the
database to people. Proofs (when conveniently
displayed) communicate to people how the results
were arrived at.

The $a Statement

Axiomatic assertions ($a statements) represent
the starting points from which other assertions
($p statements) are derived. Their most obvi-
ous use is for specifying ordinary mathematical
axioms, but they are also used for two other
purposes.

First, Metamath needs to know the syntax
of symbol sequences that constitute valid mathe-
matical statements. A Metamath proof must be
broken down into much more detail than ordinary
mathematical proofs that you may be used to
thinking of (even the “complete” proofs of formal
logic). This is one of the things that makes Meta-



math a general-purpose language, independent of
any system of logic or even syntax. If you want
to use a substitution instance of an assertion as a
step in a proof, you must first prove that the sub-
stitution is syntactically correct (or if you prefer,
you must “construct” it), showing for example
that the expression you are substituting for a wif
metavariable is a valid wif. The $a statement is
used to specify those combinations of symbols
that are considered syntactically valid, such as
the legal forms of wifs.

Second, $a statements are used to specify
what are ordinarily thought of as definitions,
i.e. new combinations of symbols that abbrevi-
ate other combinations of symbols. Metamath
makes no distinction between axioms and defi-
nitions. Indeed, it has been argued that such
distinction should not be made even in ordinary
mathematics; see Section which discusses the
philosophy of definitions. Section discusses
some technical requirements for definitions. In
set.mm we adopt the convention of prefixing ax-
iom labels with ax- and definition labels with



df-.

The results that can be derived with the Meta-
math language are only as good as the $a state-
ments used as their starting point. We cannot
stress this too strongly. For example, Metamath
will not prevent you from specifying x # = as an
axiom of logic. It is essential that you scrutinize
all $a statements with great care. Because they
are a source of potential pitfalls, it is best not to
add new ones (usually new definitions) casually;
rather you should carefully evaluate each one’s
necessity and advantages.

Once you have in place all of the basic axioms
and rules of a mathematical theory, the only $a
statements that you will be adding will be what
are ordinarily called definitions. In principle,
definitions should be in some sense eliminable
from the language of a theory according to some
convention (usually involving logical equivalence
or equality). The most common convention is
that any formula that was syntactically valid but
not provable before the definition was introduced
will not become provable after the definition is



introduced. In an ideal world, definitions should
not be present at all if one is to have absolute
confidence in a mathematical result. However,
they are necessary to make mathematics practi-
cal, for otherwise the resulting formulas would
be extremely long and incomprehensible. Since
the nature of definitions (in the most general
sense) does not permit them to automatically be
verified as “proper,” the judgment of the math-
ematician is required to ensure it. (In set.mm
effort was made to make almost all definitions
directly eliminable and thus minimize the need
for such judgment.)

If you are not a mathematician, it may be
best not to add or change any $a statements but
instead use the mathematical language already
provided in standard databases. This way Meta-
math will not allow you to make a mistake (i.e.
prove a false result).



4.2.7 Frames

We now introduce the concept of a collection of
related Metamath statements called a frame. Ev-
ery assertion ($a or $p statement) in the database
has an associated frame.

A frame is a sequence of $d, $f, and $e
statements (zero or more of each) followed by one
$a or $p statement, subject to certain conditions
we will describe. For simplicity we will assume
that all math symbol tokens used are declared
at the beginning of the database with $c and
$v statements (which are not properly part of a
frame). Also for simplicity we will assume there
are only simple $d statements (those with only
two variables) and imagine any compound $d
statements (those with more than two variables)
as broken up into simple ones.

A frame groups together those hypotheses
(and $d statements) relevant to an assertion ($a
or $p statement). The statements in a frame may
or may not be physically adjacent in a database;
we will cover this in our discussion of scoping



statements in Section [£.2.8
A frame has the following properties:

1. The set of variables contained in its $f
statements must be identical to the set of
variables contained its $e, $a, and/or $p
statements. In other words, each variable
in a $e, $a, or $p statement must have an
associated “variable type” defined for it in
a $f statement.

2. No two $f statements may contain the same
variable.

3. Each of the two variables in any $d state-
ment must occur in a $f statement.

4. Any $f statement must occur before a $e or
$d statement in which its variable occurs.

The first property determines the set of vari-
ables occurring in a frame. These are the manda-
tory variables of the frame. The second prop-
erty tells us there must be only one type specified
for a variable. The third property determines



which $d statements belong to the frame. The
last property is not a theoretical requirement but
it makes parsing of the database easier.

For our examples, we assume our database
has the following declarations:

$v P Q R $.
$c -> () |- wff $.

The following sequence of statements, describ-
ing the modus ponens inference rule, is an exam-
ple of a frame:

wp $f wff P $.

wq $f wff Q $.

maj $e |- (P ->Q ) $.
min $e |- P $.

mp $a |- Q $.

The following sequence of statements is not
a frame because R does not occur in the $e’s or

the $a:

wp $f wff P $.

wq $f wif Q $.

wr $f wff R $.

maj $e |- (P ->Q ) §.
min $e |- P $.



mp $a |- Q $.

The following sequence of statements is not a
frame because Q does not occur in a $£:

wp $f wiff P $.

maj $e¢ [- C P -> Q) $.
min $e |- P §$.

mp $a |- Q $.

The following sequence of statements is not
a frame because the $a statement is not the last
one:

wp $f wff P $.

wq $f wff Q $.

maj $e |- CP ->Q ) $.
mp $a |- Q $.

min $e |- P §$.

Associated with a frame is a sequence of
mandatory hypotheses. This is simply the
set of all $f and $e statements in the frame, in
the order they appear. A frame can be refer-
enced in a later proof using the label of the $a
or $p assertion statement, and the proof makes
an assignment to each mandatory hypothesis in
the order in which it appears. This means the



order of the hypotheses, once chosen, must not
be changed so as not to affect later proofs ref-
erencing the frame’s assertion statement. (The
Metamath proof verifier will, of course, flag an
error if a proof becomes incorrect by doing this.)
Since proofs make use of “Reverse Polish nota-
tion,” described in Section [4.3] we call this order
the RPN order of the hypotheses.

Note that $d statements are not part of the set
of mandatory hypotheses, and their order doesn’t
matter (as long as they satisfy the fourth property
for a frame described above). The $d statements
specify restrictions on variables that must be
satisfied (and are checked by the proof verifier)
when expressions are substituted for them in a
proof, and the $d statements themselves are never
referenced directly in a proof.

A frame with a $p (provable) statement re-
quires a proof as part of the $p statement. Some-
times in a proof we want to make use of tempo-
rary or dummy variables that do not occur in the
$p statement or its mandatory hypotheses. To ac-
commodate this we define an extended frame



as a frame together with zero or more $d and $£f
statements that reference variables not among
the mandatory variables of the frame. Any new
variables referenced are called the optional vari-
ables of the extended frame. If a $f statement
references an optional variable it is called an op-
tional hypothesis, and if one or both of the
variables in a $d statement are optional variables
it is called an optional disjoint-variable re-
striction. Properties 2, 3, and 4 for a frame also
apply to an extended frame.

The concept of optional variables is not mean-
ingful for frames with $a statements, since those
statements have no proofs that might make use
of them. There is no restriction on including
optional hypotheses in the extended frame for a
$a statement, but they serve no purpose.

The following set of statements is an example
of an extended frame, which contains an optional
variable R and an optional hypothesis wr. In this
example, we suppose the rule of modus ponens
is not an axiom but is derived as a theorem from
earlier statements (we omit its presumed proof).



Variable R may be used in its proof if desired
(although this would probably have no advantage
in propositional calculus). Note that the sequence
of mandatory hypotheses in RPN order is still
wp, wq, maj, min (i.e. wr is omitted), and this
sequence is still assumed whenever assertion mp
is referenced in a subsequent proof.

wp $f wff P $.

wq $f wff Q $.

wr $f wff R $.

maj $e |- CP ->Q ) $.

min $e |- P $.

mp $p |- Q $= ... §.

Every frame is an extended frame, but not
every extended frame is a frame, as this example
shows. The underlying frame for an extended
frame is obtained by simply removing all state-
ments containing optional variables. Any proof
referencing an assertion will ignore any exten-
sions to its frame, which means we may add or
delete optional hypotheses at will without affect-
ing subsequent proofs.

The conceptually simplest way of organizing a



Metamath database is as a sequence of extended
frames. The scoping statements ${ and $} can
be used to delimit the start and end of a frame,
leading to the following possible structure for a
database.

($v and $c statements)
${
extended frame
$}
${
extended frame

$}

In practice, this structure is inconvenient be-
cause we have to repeat any $f, $e, and $d state-
ments over and over again rather than stating
them once for use by several assertions. The
scoping statements, which we will discuss next,
allow this to be done. In principle, any Metamath
database can be converted to the above format,
and the above format is the most convenient to



use when studying a Metamath database as a
formal system(Appendix [C]). In fact, Metamath
internally converts the database to the above
format. The command show statement in the
Metamath program will show you the contents
of the frame for any $a or $p statement, as well
as its extension in the case of a $p statement.

During our discussion of scoping statements,
it may be helpful to think in terms of the equiv-
alent sequence of frames that will result when
the database is parsed. Scoping (other than the
limited use above to delimit frames) is not a the-
oretical requirement for Metamath but makes it
more convenient.

4.2.8 Scoping Statements (${ and
$})

The scoping statements, ${ (start of block)
and $} (end of block), provide a means for
controlling the portion of a database over which
certain statement types are recognized. The syn-



tax of a scoping statement is very simple; it just
consists of the statement’s keyword:

${
$}

For example, consider the following database
where we have stripped out all tokens except the
scoping statement keywords. For the purpose
of the discussion, we have added subscripts to
the scoping statements; these subscripts do not
appear in the actual database.

${1 ${o $}o ${5 ${4 $}s $}3 $h

Each ${ statement in this example is said to be
matched with the $} statement that has the
same subscript. Each pair of matched scoping
statements defines a region of the database called
a block. Blocks can be nested inside of other
blocks; in the example, the block defined by ${4
and $}4 is nested inside the block defined by ${3
and $}3 as well as inside the block defined by
${; and $};. In general, a block may be empty,



it may contain only non-scoping statements,[r_z]
or it may contain any mixture of other blocks
and non-scoping statements. (This is called a
“recursive” definition of a block.)

Associated with each block is a number called
its nesting level that indicates how deeply the
block is nested. The nesting levels of the blocks
in our example are as follows:

${ ${ 83 ${ ${ 83 $} $3
—— ——

2 3
—_——
2

~
1

-~
0

The entire database is considered to be one big
block (the outermost block) with a nesting level
of 0. The outermost block is not bracketed by
scoping statementsF_g]

All non-scoping Metamath statements be-
come recognized or active at the place where

12Those statements other than ${ and $3.
13The language was designed this way so that several
source files can be joined together more easily.



they appear[] Certain of these statement types
become inactive at the end of the block in which
they appear; these statement types are:

$c, $v, $d, $e, and $f.

The other statement types remain active forever
(i.e. through the end of the database); they are:

$a and $p.

Any statement (of these 7 types) located in the
outermost block will remain active through the
end of the database and thus are effectively “global”
statements.

All $c statements must be placed in the out-
ermost block. Since they are therefore always
global, they could be considered as belonging to
both of the above categories.

The scope of a statement is the set of state-
ments that recognize it as active.

14To keep things slightly simpler, we do not bother to
define the concept of “active” for the scoping statements.



The concept of “active” is also defined for
math symbols. Math symbols (constants and
variables) become active in the $c and $v state-
ments that declare them. A variable becomes
inactive when its declaration statement becomes
inactive. Because all $c statements must be in
the outermost block, a constant will never be-
come inactive after it is declared.

Redeclaration of Math Symbols

A variable may not be declared a second time
while it is active, but it may be declared again
after it becomes inactive. This provides a con-
venient way to introduce “local” variables, i.e.
temporary variables for use in the frame of an
assertion or in a proof without keeping them
around forever. A previously declared variable
may not be redeclared as a constant.

A constant may not be redeclared. And, as
mentioned above, constants must be declared in
the outermost block.

The reason variables may have limited scope



but not constants is that an assertion ($a or $p
statement) remains available for use in proofs
through the end of the database. Variables in an
assertion’s frame may be substituted with what-
ever is needed in a proof step that references the
assertion, whereas constants remain fixed and
may not be substituted with anything. The par-
ticular token used for a variable in an assertion’s
frame is irrelevant when the assertion is refer-
enced in a proof, and it doesn’t matter if that
token is not available outside of the referenced
assertion’s frame. Constants, however, must be
globally fixed.

In the present version of the Metamath lan-
guage, there is no theoretical benefit for the fea-
ture allowing variables to be active for limited
scopes rather than global. It is just a conve-
nience that allows them, for example, to be lo-
cally grouped together with their corresponding
$f variable-type declarationsff]

15 A future version of the Metamath language may ex-
tend the language to include true local variables as well



Frames Revisited

Now that we have covered scoping, we will look
at how an arbitrary Metamath database can be
converted to the simple sequence of extended
frames described on p. [302] This is also how
Metamath stores the database internally when
it reads in the database source. The method is
simple. First, we collect all constant and variable
($c and $v) declarations in the database, ignoring
duplicate declarations of the same variable in dif-
ferent scopes. We then put our collected $c and
$v declarations at the beginning of the database,
so that their scope is the entire database. Next,
for each assertion in the database, we determine
its frame and extended frame. The extended
frame is simply the $f, $e, and $d statements

as local constants. I have not decided upon the best
way to do this or even if it should be done at all; the
main issue is whether the benefits offset greater confusion
in learning the language. In any case, the rules for the
present language were chosen to let existing databases be
compatible with any future language extensions.



that are active. The frame is the extended frame
with all optional hypotheses removed.

An equivalent way of saying this is that the
extended frame of an assertion is the collection
of all $f, $e, and $d statements whose scope
includes the assertion, in the order they appear.

4.3 The Anatomy of a Proof

Each provable assertion ($p statement) in a databas
must include a proof. The proof is located be-
tween the $= and $. keywords in the $p state-
ment.

In the basic Metamath language, a proof is a
sequence of statement labels. This label sequence
serves as a set of instructions that the Metamath
program uses to construct a series of math sym-
bol sequences. The construction must ultimately
result in the math symbol sequence contained
between the $p and $= keywords of the $p state-
ment. Otherwise, the Metamath program will
consider the proof incorrect, and it will notify



you with an appropriate error message when you
ask it to verify the proof['f] Each label in a proof
is said to reference its corresponding statement.

Associated with any assertion ($p or $a state-
ment) is a set of hypotheses ($£ or $e statements)
that are active with respect to that assertion.
Some are mandatory and the others are optional.
You should review these concepts if necessary.

Each label in a proof must be either the la-
bel of a previous assertion ($a or $p statement)
or the label of an active hypothesis ($e or $f
statement) of the $p statement containing the
proof. Hypothesis labels may reference both the
mandatory and the optional hypotheses of the
$p statement.

The label sequence in a proof specifies a con-
struction in reverse Polish notation (RPN).
You may be familiar with RPN if you have used

16To make the loading faster, the Metamath program
does not automatically verify proofs when you read in
a database unless you use the /verify qualifier. After
a database has been read in, you may use the verify
proof * command to verify proofs.



Hewlett-Packard or similar hand-held calculators.
In the calculator analogy, a hypothesis label is
like a number and an assertion label is like an
operation. On an RPN calculator, an operation
takes one or more previous numbers in an input
sequence, performs a calculation on them, and re-
places those numbers and itself with the result of
the calculation. For example, the input sequence
2,2,4+ on an RPN calculator results in 4, and
the input sequence 1, 2,2, +, 4 results in 1,4, +
which results in 5.

Understanding how RPN is processed involves
the concept of a stack, which can be thought of
as a set of temporary memory locations that hold
intermediate results. When Metamath encoun-
ters a hypothesis label it places or pushes the
math symbol sequence of the hypothesis onto the
stack. When Metamath encounters an assertion
label, it associates the most recent stack entries
with the mandatory hypotheses of the assertion,
in the order where the most recent stack entry
is associated with the last mandatory hypothesis
of the assertion. It then determines what substi-



tutions have to be made into the variables of the
assertion’s mandatory hypotheses to make them
identical to the associated stack entries. It then
makes those same substitutions into the assertion
itself. Finally, Metamath removes or pops the
matched hypotheses from the stack and pushes
the substituted assertion onto the stack.

For the purpose of matching the mandatory
hypothesis to the most recent stack entries, whethe:
a hypothesis is a $e or $f statement is irrelevant.
The only important thing is that a set of substi-
tution@ exist that allow a match (and if they
don’t, the proof verifier will let you know with an
error message). The Metamath language is spec-
ified in such a way that if a set of substitutions
exists, it will be unique. Specifically, the require-
ment that each variable have a type specified for
it with a $f statement ensures the uniqueness.

We will illustrate this with an example. Con-
sider the following Metamath source file:

17In the Metamath spec (Section |4.1)), we use the singu-
lar term “substitution” to refer to the set of substitutions
we talk about here.



$c () -> wff $.
$v pqr s $.

wp $f wff p $
wq $f wff q $.
wr $f wff r $.
ws $f wff s $
w2 $a wff ( p

->q ) 8.
wnew $p wif -=> (r ->p ) ) $= ws

(s

wr wp w2 w2 $.
This Metamath source example shows the defi-
nition and “proof” (i.e., construction) of a well-
formed formula (wff) in propositional calculus.
(You may wish to type this example into a file to
experiment with the Metamath program.) The
first two statements declare (introduce the names
of) four constants and four variables. The next
four statements specify the variable types, namely
that each variable is assumed to be a wif. State-
ment w2 defines (postulates) a way to produce a
new wif, ( p => q ), from two given wffs p and
g- The mandatory hypotheses of w2 are wp and
wq. Statement wnew claims that ( s => (r ->
p ) ) is a wif given three wifs s, r, and p. More
precisely, wnew claims that the sequence of ten



symbols wff (s => ( r -> p ) ) is provable
from previous assertions and the hypotheses of
wnew. Metamath does not know or care what a
wif is, and as far as it is concerned wff is just
an arbitrary constant symbol in a math symbol
sequence. The mandatory hypotheses of wnew
are wp, wr, and ws; wq is an optional hypothesis.
In our particular proof, the optional hypothesis is
not referenced, but in general, any combination
of active (i.e. optional and mandatory) hypothe-
ses could be referenced. The proof of statement
wnew is the sequence of five labels starting with
ws (step 1) and ending with w2 (step 5).

When Metamath verifies the proof, it scans
the proof from left to right. We will examine
what happens at each step of the proof. The
stack starts off empty. At step 1, Metamath
looks up label ws and determines that it is a
hypothesis, so it pushes the symbol sequence of
statement ws onto the stack:

’ Stack location \ Contents ‘
’ 1 ‘ wif s ‘




Metamath sees that the labels wr and wp in
steps 2 and 3 are also hypotheses, so it pushes
them onto the stack. After step 3, the stack looks
like this:

’ Stack location \ Contents ‘

3 wiff p
2 wif r
1 wiff s

At step 4, Metamath sees that label w2 is an
assertion, so it must do some processing. First,
it associates the mandatory hypotheses of w2,
which are wp and wq, with stack locations 2 and
3, in that order. Metamath determines that the
only possible way to make hypothesis wp match
(become identical to) stack location 2 and wq
match stack location 3 is to substitute variable
p with r and q with p. Metamath makes these
substitutions into w2 and obtains the symbol
sequence wff ( r -> p ). It removes the hy-
potheses from stack locations 2 and 3, then places
the result into stack location 2:



’ Stack location ‘ Contents ‘
2 wif (r ->p)
1 wiff s

At step 5, Metamath sees that label w2 is an
assertion, so it must again do some processing.
First, it matches the mandatory hypotheses of
w2, which are wp and wq, to stack locations 1
and 2. Metamath determines that the only pos-
sible way to make the hypotheses match is to
substitute variable p with s and q with ( r ->
p ). Metamath makes these substitutions into
w2 and obtains the symbol sequence wff ( s ->
( r -> p ) ). It removes stack locations 1 and
2, then places the result into stack location 1:

’ Stack location \ Contents ‘
’1 \wff(s—>(r—>p))‘

After Metamath finishes processing the proof,
it checks to see that the contents of stack location
1 is the same as the math symbol sequence in the
$p statement. This is the case for our proof of



wnew, so we have proved wnew successfully. If the
result differs, Metamath will notify you with an
error message. An error message will also result
if the stack contains more than one entry at the
end of the proof, or if the stack did not contain
enough entries at any point in the proof to match
all of the mandatory hypotheses of an assertion.
Finally, Metamath will notify you with an error
message if no substitution is possible that will
make a referenced assertion’s hypothesis match
the stack entries. You may want to experiment
with the different kinds of errors that Metamath
will detect by making some small changes in the
proof of our example.

Metamath’s proof notation was designed pri-
marily to express proofs in a relatively compact
manner, not for readability by humans. Meta-
math can display proofs in a number of differ-
ent ways with the show proof command. The
/lemmon qualifier displays it in a format that is
easier to read when the proofs are short, and you
saw examples of its use in Chapter [2 For longer
proofs, it is useful to see the tree structure of



the proof. A tree structure is displayed when the
/lemmon qualifier is omitted. You will probably
find this display more convenient as you get used
to it. The tree display of the proof in our example
looks like this:

1 Wp=WwSs $f wff s

2 Wp=Wr $f wff r

3 Wq=wp $f wif p

4 wq=w2 $a wff (r -> p )

5 wnew=w2 $a wff (s -> Cr ->p ) )

The number to the left of each line is the step
number. Following it is a hypothesis associa-
tion, consisting of two labels separated by =. To
the left of the = (except in the last step) is the
label of a hypothesis of an assertion referenced
later in the proof; here, steps 1 and 4 are the
hypothesis associations for the assertion w2 that
is referenced in step 5. A hypothesis association
is indented one level more than the assertion that
uses it, so it is easy to find the corresponding
assertion by moving directly down until the in-
dentation level decreases to one less than where
you started from. To the right of each = is the



proof step label for that proof step. The state-
ment keyword of the proof step label is listed
next, followed by the content of the top of the
stack (the most recent stack entry) as it exists
after that proof step is processed. With a lit-
tle practice, you should have no trouble reading
proofs displayed in this format.

Our simple example shows the syntax con-
struction of a formula that might be used as part
of the construction of a “real” proof step that
deduces theorems from other theorems. In stan-
dard mathematics, this kind of construction is
not considered a proper part of the proof at all,
and it certainly becomes rather boring after a
while. To filter out syntax constructions in the
proof display, the show proof command has the
qualifier /essential which you will probably use
quite often in order to see just the “real” steps
of the proof.

When verifying a proof, Metamath will check
that no mandatory $d statement of an assertion
referenced in a proof is violated when substitu-
tions are made to the variables in the assertion.



For details see Section [L.1.4] or [£.2.4]

4.3.1 The Concept of Unification

During the course of verifying a proof, when
Metamath encounters an assertion label, it asso-
ciates the mandatory hypotheses of the assertion
with the top entries of the RPN stack. Meta-
math then determines what substitutions it must
make to the variables in the assertion’s manda-
tory hypotheses in order for these hypotheses
to become identical to their corresponding stack
entries. This process is called unification. (We
also informally use the term “unification” to re-
fer to a set of substitutions that results from the
process, as in “two unifications are possible.”)
After the substitutions are made, the hypotheses
are said the be unified.

If no such substitutions are possible, Meta-
math will consider the proof incorrect and notify
you with an error message.

The general algorithm for unification described
in the literature is somewhat complex. However,



in the case of Metamath it is trivial because of
the requirement that each variable have its type
specified with a $f hypothesis and that each $f
hypothesis have the restricted syntax of a con-
stant followed by a variable. The constant in the
$f hypothesis must match the first symbol of the
corresponding RPN stack entry (which will be
also be a constant), so only possible match for
the variable in the $f hypothesis is the sequence
of symbols in the stack entry after the initial
constant.

In the Proof Assistant, a more general unifi-
cation algorithm is used. While a proof is being
developed, sometimes not enough information
is available to determine a unique unification.
In this case Metamath will ask you to pick the
correct one.



4.4 Extensions to the Meta-
math Language

4.4.1 Comments in the Metamath
Language

The commenting feature allows you to annotate
the contents of a database. Just as with most
computer languages, comments are ignored for
the purpose of interpreting the contents of the
database. Comments effectively act as additional
white space between tokens when a database is
parsed.

A comment may be placed between any two
tokens in a source file.

Comments have the following syntax:

$( text $)

Here, text is a string, possibly empty, of any
characters in Metamath’s character set (p. [251)),
except that the character strings $( and $) may
not appear in text. Thus nested comments are



not permitted{™| Metamath will complain if you
give it

$( This is a $( nested $) comment. $)

(To compensate for this behavior, I often change
all $’s to @’s in sections of Metamath code I wish
to comment out.)

Math Symbols and Labels Inside Comments

Inside of comments, a string of tokens enclosed
in grave accents (‘) will be converted to stan-
dard mathematical symbols during ETEX output
typesetting, according to the information in the
special $t comment in the database, as described
in Appendix [Al The first ¢ causes the output
processor to enter math mode and the second
one exits it. Two consecutive grave accents *°
are treated as a single actual grave accent (both

18Computer languages have differing standards for
nested comments, and rather than picking one it was
felt simplest not to allow them at all, at least in the
current version of Metamath (0.07.30).



inside and outside of math mode) and will not
cause the output processor to enter or exit math
mode.

Outside of math mode, any token preceded
by a tilde (~) will be formatted in typewriter
font, and the tilde removed, to make them stand
it from the rest of the text. This formatting will
be applied from all characters after the tilde up
to the first white space. This formatting mode
is called label mode. If a literal tilde is desired
(outside of math mode), use two tildes in a row
to represent it.

These markup features have to do only with
how the comments are typeset, and have no ef-
fect on how Metamath verifies the database. The
improper use of them may result in incorrectly
typeset output, but no Metamath error mes-
sages will result during the read and verify
proof commands. (However, the new write
theorem_list command, added in version 0.07.30
of the Metamath program, will check for markup
errors as a side-effect of its HTML generation.)

Section [5.7 has instructions for creating KTEX



output.

Math Symbols In Comments

The grave accent ¢ tells Metamath to switch
a comment to math mode. In this mode, the
characters following the ¢ are interpreted as a
sequence of math symbol tokens separated by
white space. The tokens are looked up in the
$t comment and if found, they will be replaced
by the standard mathematical symbols that they
correspond to before being placed in the typeset
output file. If not found, the symbol will be
output as is and a warning will be issued. The
tokens do not have to be active in the database,
although a warning will be issued if they are not
declared with $c or $v statements.

The comment will stay in math mode until a
second ¢ is found or the end of the comment is
reached. Here is an example of its use:

$( Pierce’s axiom, ‘ ( ( ph -> ps ) —>
ph ) ->ph
is not very intuitive. §)



becomes

$ ( Pierce’s axiom, ((¢ — ¥) — ) — ¢, is not
very intuitive. $)

Note that the math symbol tokens must be
surrounded by white space. White space should
also surround the ¢ delimiters.

The math mode feature also gives you a quick
and easy way to generate text containing mathe-
matical symbols, independently of the intended
purpose of Metamath. To do this, simply create
your text with grave accents surrounding your
formulas, after making sure that your math sym-
bols are mapped to KTEX symbols as described
in Appendix [A]l Tt is easier if you start with a
database with predefined symbols such as set .mm.
Use your grave-quoted math string to replace an
existing comment, then typeset the statement
corresponding to that comment following the in-
structions from the help tex command in the
Metamath program. You will then probably want
to edit the resulting file with a text editor to fine
tune it to your exact needs.



Label References in Comments

Outside of math mode, a tilde ~ indicates to
Metamath’s output processor that the token that
follows (i.e. the characters up to the next white
space) represents a statement label. Whether or
not the token is an actual statement label is not
checked, and the token does not have to have the
correct syntax for a label; no error messages will
be produced. The only effect of the label mode
on the output is that typewriter font will be used
for the tokens that are placed in the BTEX output
file.

(On the other hand, the tokens after the tilde
must be actual labels for correct output of HTML,
described in the next section, and error messages
will be issued during that output if they aren’t.)

4.4.2 Comment Markup Notation
for HTML

The automated generation of HTML web pages
(Section|5.8)) is new in version 0.07.30 of the Meta-



math program. The comment markup notation
for KTEX also applies to HTML, and some addi-
tional features specifically for HTML were added.

These markup features (including those reused
from I¥TEX) are the following.

“ math-symbol math-symbol ... ¢ (math

symbols enclosed in grave accents i.e. back-
ticks) - Use graphical math-symbols in the
HTML output. Inside of a math-symbol, ¢
means literal ¢.

~ label (tilde followed by a label) - Use a
hyperlink in the HTML output that links
to the web page for statement label. Ex-
ception: if label begins with http://, it is
assumed to be a URL (which is used as-is,
except that a ~ in the URL should be spec-
ified with 7). Only $a and $p statement
labels may be used, since web pages for $e
and $f statements are not generated.

Lauthor] - Link to a bibliographical ref-
erence. See help html and help write



bibliography in the Metamath program
for more information. See also Sections[5.8.1]

and [5.8.3

$t - Flag the comment as the special one
containing IXTEX and/or HTML typesetting
definitions. See Section[5.8.1and Appendix|[A

_ (underscore) - Italicize text starting from
space_non-space (i.e. _ with a space before
it and a non-space character after it) until
the next non-space_space. Normal punctu-
ation (e.g. a trailing comma or period) is
ignored when determining space.

_ (underscore) - non-space_non-space-string,
where non-space-string is a string of non-
space characters, will make non-space-string
become a subscript.

It is recommended that spaces surround any ~
and ¢ tokens in the comment and that a space
follow the label after a ~ token. This will make
global substitutions to change labels and symbol



names much easier and also eliminate any future
chance of ambiguity. Spaces around these tokens
are automatically removed in the final output to
conform with normal rules of punctuation; for
example, a space between a trailing ¢ and a left
parenthesis will be removed.

The [author] notation will also create an
entry in the bibliography cross-reference file gen-
erated by write bibliography (Section [5.8.3).
For this to work properly, the surrounding com-
ment must be formatted as follows:

keyword label noise-word [author] p.
number

for example

Theorem 5.2 of [Monk] p. 223

The keyword is not case sensitive and must be
one of the following:

theorem lemma definition compare
proposition corollary

axiom rule remark exercise problem
notation example



property figure postulate equation
scheme chapter

The optional label may consist of more than one
(non-keyword and non-noise-word) word. The
optional noise-word is one of:

of in from on

and is ignored when the cross-reference file is
created. The write bibliography command
will perform error checking to verify the above
format.

A good way to become familiar with the
markup notation is to look at the extensive ex-
amples in the set.mm database.

4.4.3 Including Other Files in a
Metamath Source File

The keywords $[ and $] specify a file to be in-
cluded at that point in a Metamath source file.
The syntax for including a file is as follows:

$L[ file-name $1]



The file-name should be a single token with
the same syntax as a math symbol (i.e., all 93
printable characters other than $ are allowed,
subject to the file-naming limitations of your op-
erating system). Comments may appear between
the $[ and $] keywords. Included files may in-
clude other files, which may in turn include other
files, and so on.

For example, suppose you want to use the set
theory database as the starting point for your
own theory. The first line in your file could be

$[ set.mm $]

All of the information (axioms, theorems, etc.) in
set.mm and any files that it includes will become
available for you to reference in your file. This can
help make your work more modular. A drawback
to including files is that if you change the name
of a symbol or the label of a statement, you must
also remember to update any references in any
file that includes it.



The naming conventions for included files are
the same as those of your operating system/[”]
For compatibility among operating systems, you
should keep the file names as simple as possible.
A good convention to use is file.mm where file is
eight characters or less, in lower case.

There is no limit to the nesting depth of in-
cluded files. One thing that you should be aware
of is that if two included files themselves include
a common third file, only the first reference to
this common file will be read in. This allows you
to include two or more files that build on a com-
mon starting file without having to worry about
label and symbol conflicts that would occur if the

190n the Macintosh, prior to Mac OS X, a colon is
used to separate disk and folder names from your file
name. For example, volume: file-name refers to the root
directory, volume: folder-name: file-name refers to a folder

a deeper folder. A simple file-name refers to a file in the
folder from which you launch the Metamath application.
Under Mac OS X and later, the Metamath program is
run under the Terminal application, which conforms to
Unix naming conventions.



common file were read in more than once. (In
fact, if a file includes itself, the self reference will
be ignored, although of course it would not make
any sense to do that.) This feature also means,
however, that if you try to include a common file
in several inner blocks, the result might not be
what you expect, since only the first reference
will be replaced with the included file (unlike
the include statement in most other computer
languages). Thus you would normally include
common files only in the outermost block.

4.4.4 Compressed Proof Format

The proof notation presented in Section is
called a normal proof and in principle is suffi-
cient to express any proof. However, proofs often
contain steps and subproofs that are identical.
This is particularly true in typical Metamath
applications, because Metamath requires that
the math symbol sequence (usually containing a
formula) at each step be separately constructed,
that is, built up piece by piece. As a result, a



lot of repetition often results. The compressed
proof format allows Metamath to take advantage
of this redundancy to shorten proofs.

The specification for the compressed proof
format is given in Appendix [B]

Normally you need not concern yourself with
the details of the compressed proof format, since
the Metamath program will allow you to convert
from the normal format to the compressed for-
mat with ease, and will also automatically convert
from the compressed format when proofs are dis-
played. The overall structure of the compressed
format is as follows:

$= ( label-list ) compressed-proof $.

The first ( serves as a flag to Metamath that a
compressed proof follows. The label-list includes
all statements referred to by the proof except the
mandatory hypotheses. The compressed-proof is
a compact encoding of the proof, using upper case
letters, and can be thought of as a large integer in
base 26. White space inside of compressed-proof
is optional and is ignored.



It is important to note that the order of the
mandatory hypotheses of the statement being
proved must not be changed if the compressed
proof format is used, otherwise the proof will
become incorrect. The reason for this is that the
mandatory hypotheses are not mentioned explic-
itly in the compressed proof in order to make the
compression more efficient. If you wish to change
the order of mandatory hypotheses, you must first
convert the proof back to normal format using
the save proof statement /normal command.
Later, you can go back to compressed format with
save proof statement /compressed.

During error checking with the verify proof
command, an error found in the a compressed
proof may point to a character in compressed-
proof, which may not be very meaningful to you.
In this case, try to save proof /mormal first,
then do the verify proof again. In general, it
is best to make sure a proof is correct before
saving it in compressed format, because severe
errors are less likely to be recoverable than in
normal format.



4.4.5 Specifying Unknown Proofs
or Subproofs

In a proof under development, any step or sub-
proof that is not yet known may be represented
with a single ?. For the purposes of parsing
the proof, the ? will push a single entry onto
the RPN stack just as if it were a hypothesis.
While developing a proof with the Proof Assis-
tant, a partially developed proof may be saved
with the save new_proof command, and ?’s will
be placed at the appropriate places.

All $p statements must have proofs, even if
they are entirely unknown. Before creating a
proof with the Proof Assistant, you should specify
a completely unknown proof as follows:

label $p statement $= 7 $.

The verify proof command will check the
known portions of a partial proof for errors, but
will warn you that the statement has not been
proved.



Note that partially developed proofs may
be saved in compressed format if desired. In
this case, you will see one or more ?’s in the
compressed-proof part.

4.5 Appendix: Axioms vs. D
initions

Metamath makes no distinction between axioms
and definitions. The $a statement is used for
both. At first, this may seem puzzling. In the
minds of many mathematicians, the distinction is
clear, even obvious, and hardly worth discussing.
A definition is considered to be merely an abbre-
viation that can be replaced by the expression
for which it stands; although unless one actually
does this, to be precise that one should say that
a theorem is a consequence of the axioms and
the definitions that are used in the formulation
of the theorem [4], p. 20].

What is a definition? In its simplest form, a
definition introduces a new symbol and provides



an unambiguous rule to transform an expression
containing the new symbol to one without it.
The concept of a “proper definition” (as opposed
to a creative definition) that is usually agreed
upon is (1) the definition should not strengthen
the language and (2) any symbols introduced
by the definition should be eliminable from the
language [42]. In other words, they are mere
typographical conveniences that do not belong
to the system and are theoretically superfluous.
This may seem obvious, but in fact the nature
of definitions can be subtle, sometimes requiring
difficult metatheorems to establish that they are
not creative.

A more conservative stance was taken by lo-
gician S. Lesniewski.

Lesniewski regards definitions as the-
ses of the system. In this respect
they do not differ either from the ax-
ioms or from theorems, i.e. from the
theses added to the system on the
basis of the rule of substitution or



the rule of detachment [modus po-
nens|. Once definitions have been
accepted as theses of the system, it
becomes necessary to consider them
as true propositions in the same sense
in which axioms are true [32].

Let us look at some simple examples of def-
initions in propositional calculus. Consider the
definition of logical OR (disjunction): “P V Q
denotes =P — @ (not P implies @)).” It is very
easy to recognize a statement making use of this
definition, because it introduces the new symbol
V that did not previously exist in the language.
It is easy to see that no new theorems of the
original language will result from this definition.

Next, consider a definition that eliminates
parentheses: “P — @) — R denotes P — (Q —
R).” This is more subtle, because no new symbols
are introduced. The reason this definition is con-
sidered proper is that no new symbol sequences
that are valid wifs (well-formed formulas) in the
original language will result from the definition,



since “P — () — R” is not a wiff in the original
language. Here, we implicitly make use of the fact
that there is a decision procedure that allows us
to determine whether or not a symbol sequence
is a wif, and this fact allows us to use symbol
sequences that are not wifs to represent other
things (such as wifs) by means of the definition.
However, to justify the definition as not being
creative we need to prove that “P — () — R” is
in fact not a wff in the original language, and
this is more difficult than in the case where we
simply introduce a new symbol.

What constitutes a definition versus an axiom
is sometimes arbitrary in mathematical literature.
For example, the connectives V (OR), A (AND),
and <> (equivalent to) in propositional calculus
are usually considered defined symbols that can
be used as abbreviations for expressions contain-
ing the “primitive” connectives — and —. This is
the way we treat them in the standard logic and
set theory database set.mm. However, the first
three connectives can also be considered “primi-
tive,” and axiom systems have been devised that



treat all of them as such. For example, [17], p. 35]
presents one with 15 axioms, some of which in
fact coincide with what we have chosen to call
definitions in set.mm. In certain subsets of classi-
cal propositional calculus, such as the intuitionist
fragment, it can be shown that one cannot make
do with just — and — but must treat additional
connectives as primitive in order for the system
to make sense ]

In set theory, recursive definitions define a
newly introduced symbol in terms of itself. The
justification of recursive definitions, using several
“recursion theorems,” is the usually one of the
first sophisticated proofs a student encounters
when learning set theory, and there is a significant
amount of implicit metalogic behind a recursive
definition even though the definition itself is typ-
ically simple to state. It is, however, possible
to substitute one kind of complexity for another.
We can eliminate the need for metalogical justifi-

20Two nice systems that make the transition from intu-
itionistic and other weak fragments to classical logic just
by adding axioms are given in [50].



cation by defining the operation directly with an
explicit (but complicated) expression, then deriv-
ing the recursive definition directly as a theorem,
using a recursion theorem “in reverse.” We do
this in set.mm, as follows.

In set.mm our goal was to introduce almost
all definitions in the form of two expressions con-
nected by either <+ or =, where the thing being
defined does not appear on the right hand side.
Quine calls this form “a genuine or direct defini-
tion” [48, p. 174], which makes the definitions
very easy to eliminate and the metalogic needed
to justify them as simple as possible. We achieved
this goal in almost all cases. Sometimes this
makes the definitions more complex and less intu-
itive. For example, the traditional way to define
addition of natural numbers is to define an op-
eration called successor (which means “plus one”
and is denoted by “suc”), then define addition
recursively with the two definitions n+0 = n and
m+sucn = suc(m—+n). Although this definition
seems simple and obvious, the method to elimi-
nate the definition is not obvious: in the second



part of the definition, addition is defined in terms
of itself. By eliminating the definition, we don’t
mean repeatedly applying it to specific m and
n but rather showing the explicit, closed-form
set-theoretical expression that m + n represents,
that will work for any m and n and that does
not have a + sign on its right-hand side. For a
recursive definition like this not to be circular
(creative), there are some hidden, underlying as-
sumptions we must make, for example that the
natural numbers have a certain kind of order. In
set.mm we chose to start with the direct (though
complex and nonintuitive) definition then derive
from it the standard recursive definitionPl The

21The closed-form definition used in set.mm for the
addition operation on ordinals (of which natural numbers
are a subset) is
df-oadd $a F+,={((z,y),2)|((z€0OnAyeOn
YAz=(rec({{w,v)|v=sucw},z)‘y
)}
Here, the abstraction class of nested ordered pairs is
defined by df-oprab in set.mm, and rec is a “recursion
operator” with the definition
df-rfg $a Frec(F,A)=U{f|Fz(x€OnA(fFn



end result is the same, but we completely elimi-
nate the rather complex metalogic that justifies
the recursive definition. (For a mathematician,
recursive definitions are more efficient and intu-
itive than direct ones once the metalogic has been
learned or possibly just accepted as correct. How-
ever, it was felt that direct definition in set.mm
maximizes rigor by minimizing metalogic. It can
be eliminated effortlessly, something difficult to
do with a recursive definition.)

eAVy(yex—(fy)={(g,2)[((g=
IANz=A)V(-(g=oVLimdomg)Az
=(F‘(¢g‘Udomg)))V(LimdomgA z
—Urang))} (1))}
which can be further broken down with definitions shown
in Section You may be surprised at the complexity
of what seems like such a simple notion. From these
definitions the simpler, more intuitive recursive definition
is derived as a set of theorems.



Chapter 5

The Metamath
Program

This chapter provides a reference manual for the
Metamath program.

Current instructions for obtaining and in-
stalling the Metamath program can be found
at the http://metamath.org web site. For Win-
dows, there is a pre-compiled version called metama
For Unix, Linux, and Mac OS X (which we will
refer to collectively as “Unix”), the Metamath


http://metamath.org

program can be compiled from its source code
with the command

gcc *x.c -o metamath

using the gcc ¢ compiler available on those sys-
tems.

In the command syntax descriptions below,
fields enclosed in square brackets [ | are optional.
File names may be optionally enclosed in single
or double quotes. This is useful if the file name
contains slashes (/), such as in Unix path names,
that might be confused with Metamath command
qualifiers.

5.1 Invoking Metamath

Unix, Linux, and Mac OS X have a command-
line interface called the bash shell. (In Mac OS
X, select the Terminal application from Applica-
tions/Utilities.) To invoke Metamath from the
bash shell prompt, assuming that the Metamath
program is in the current directory, type

bash$ ./metamath



To invoke Metamath from a Windows DOS or
Command Prompt, assuming that the Metamath
program is in the current directory (or in a di-
rectory included in the Path system environment
variable), type

C:\metamath>metamath

To use command-line arguments at invoca-
tion, the command-line arguments should be a list
of Metamath commands, surrounded by quotes if
they contain spaces. In Windows, the surround-
ing quotes must be double (not single) quotes.
For example, to read the database file set.mm,
verify all proofs, and exit the program, type (un-
der Unix)

bash$ ./metamath ’read set.mm’
’verify proof *’ exit

Note that in Unix, any directory path with /’s
must be surrounded by quotes so Metamath will
not interpret the / as a command qualifier. So
if set.mm is in the /tmp directory, use for the
above example



bash$ ./metamath ’read "/tmp/set.mm"’
’verify proof *’ exit

For convenience, if the command-line has one
argument and no spaces in the argument, the
command is implicitly assumed to be read. In
this one special case, /’s are not interpreted as
command qualifiers, so you don’t need quotes
around a Unix file name. Thus

bash$ ./metamath /tmp/set.mm
and
bash$ ./metamath "read ’/tmp/set.mm’"

are equivalent.

5.2 Controlling Metamath

The Metamath program was first developed on a
VAX/VMS system, and some aspects of its com-
mand line behavior reflect this heritage. Hope-
fully you will find it reasonably user-friendly once
you get used to it.



Each command line is a sequence of English-
like words separated by spaces, as in show setting
Command words are not case sensitive, and only
as many letters are needed as are necessary to
eliminate ambiguity; for example, sh se would
work for the command show settings. In some
cases arguments such as file names, statement
labels, or symbol names are required; these are
case-sensitive (although file names may not be
on some operating systems).

A command line is entered by typing it in
then pressing the return (enter) key. To find out
what commands are available, type 7 at the MM>
prompt. To find out the choices at any point in a
command, press return and you will be prompted
for them. The default choice (the one selected if
you just press return) is shown in brackets (<>).

You may also type ? in place of a command
word to force Metamath to tell you what the
choices are. The ? method won’t work, though,
if a non-keyword argument such as a file name is
expected at that point, because the program will
think that ? is the value of the argument.



Some commands have one or more optional
qualifiers which modify the behavior of the com-
mand. Qualifiers are preceded by a slash (/),
such as in read set.mm / verify. Spaces are
optional around the /. If you need to use a slash
in a command argument, as in a Unix file name,
put single or double quotes around the command
argument.

The open log command will save everything
you see on the screen and is useful to help you
recover should something go wrong in a proof, or
if you want to document a bug.

If a command responds with more than a
screenful, you will be prompted to <return> to
continue, Q to quit, or S to scroll to en
Q or q (not case-sensitive) will complete the com-
mand internally but will suppress further output
until the next MM> prompt. s will suppress fur-
ther pausing until the next MM> prompt. After
the first screen, you are also presented with the
choice of b to go back a screenful. Note that b
may also be entered at the MM> prompt immedi-
ately after a command to scroll back through the



output of that command.
A command line enclosed in quotes is exe-
cuted by your operating system. See Section[5.2.12
Warning: Pressing CTRL-C will abort the
Metamath program unconditionally. This means
any unsaved work will be lost.

5.2.1 exit Command

Syntax: exit [/force]

This command exits from Metamath. If there
have been changes to the source with the save
proof or save new_proof commands, you will
be given an opportunity to write source to per-
manently save the changes.

In Proof Assistant mode, the exit command
will return to the MM> prompt. If there were
changes to the proof, you will be given an oppor-
tunity to save new_proof.

The quit command is a synonym for exit.

Optional qualifier: /force - Do not prompt if
changes were not saved. This qualifier is useful in
submit command files (Section [5.2.4]) to ensure



predictable behavior.

5.2.2 open log Command

Syntax: open log file-name

This command will open a log file that will
store everything you see on the screen. It is useful
to help recovery from a mistake in a long Proof
Assistant session, or to document bugs.

The log file can be closed with close log. It
will automatically be closed upon exiting Meta-
math.

5.2.3 close log Command

Syntax: close log
The close log command closes a log file if
one is open. See also open log.

5.2.4 submit Command

Syntax: submit filename



This command causes further command lines
to be taken from the specified file. Note that
any line beginning with an exclamation point
(1) is treated as a comment (i.e. ignored). Also
note that the scrolling of the screen output is
continuous, so you may want to open a log file
(see open log) to record the results that fly by
on the screen. After the lines in the file are
exhausted, Metamath returns to its normal user
interface mode.

Currently, the submit command is not recur-
sive. In other words, submit commands are not
allowed inside of a command file.

5.2.5 erase Command

Syntax: erase

This command will reset Metamath to its
starting state, deleting any database that was
read in. If there have been changes to the source
with the save proof or save new_proof com-
mands, you will be given an opportunity to write
source to permanently save the changes.



5.2.6 set echo Command

Syntax: set echo on or set echo off

The set echo on command will cause com-
mand lines to be echoed with any abbreviations
expanded. While learning the Metamath com-
mands, this feature will show you the exact com-
mand that your abbreviated input corresponds
to.

5.2.7 set scroll Command

Syntax: set scroll prompted or set scroll
continuous

The Metamath command line interface starts
off in the prompted mode, which means that you
will prompted to continue or quit after each full
screen in a long listing. In continuous mode,
long listings will be scrolled without pausing.

5.2.8 set width Command

Syntax: set width number



Metamath assumes the width of your screen
is 79 characters (chosen because the Command
Prompt in Windows XP has a wrapping bug at
column 80). If your screen is wider or narrower,
this command allows you to change this default
screen width. A larger width is advantageous for
logging proofs to an output file to be printed on a
wide printer. A smaller width may be necessary
on some terminals; in this case, the wrapping of
the information messages may sometimes seem
somewhat unnatural, however. In IXTEX, there
is normally a maximum of 61 characters per line
with typewriter font. (The examples in this book
were produced with 61 characters per line.)

5.2.9 set height Command

Syntax: set height number

Metamath assumes your screen height is 24
lines of characters. If your screen is taller or
shorter, this command lets you to change the
number of lines at which the display pauses and
prompts you to continue.



5.2.10 beep Command

Syntax: beep

This command will produce a beep. By typ-
ing it ahead after a long-running command has
started, it will alert you that the command is
finished. For convenience, b is an abbreviation
for beep.

Note: If b is typed at the MM> prompt im-
mediately after the end of a multiple-page dis-
play paged with “Press <return> for more...”
prompts, then the b will back up to the previous
page rather than perform the beep command. In
that case you must type the unabbreviated beep
form of the command.

5.2.11 more Command

Syntax: more filename

This command will display the contents of
an ASCII file on your screen. (This command is
provided for convenience but is not very power-
ful. See Section to invoke your operating



system’s command to do this, such as the more
command in Unix.)

5.2.12 Operating System Comman

A line enclosed in single or double quotes will be
executed by your computer’s operating system
if it has a command line interface. For example,
on a VAX/VMS system, MM> *dir’ will print disk
directory contents. Note that this feature will
not work on the Macintosh prior to Mac OS X,
which does not have a command line interface.

For your convenience, the trailing quote is
optional.

5.2.13 Size Limitations in Meta-
math

In general, there are no fixed, predefined limits
on how many labels, tokens, statements, etc. that
you may have in a database file. The Metamath
program uses 32-bit variables (64-bit on 64-bit



CPUs) as indices for almost all internal arrays,
which are allocated dynamically as needed.

5.3 Reading and Writing File

The following commands create new files: the
open commands; the write commands; the /html,
/alt_html, /brief_html, /brief_alt_html qual
ifiers of show statement, and midi. The follow-
ing commands append to files previously opened:
the /tex qualifier of show proof and show new_pz
the /tex and /simple_tex qualifiers of show
statement; the close commands; and all screen
dialog between open log and close log.

The commands that create new files will not
overwrite an existing filename but will rename
the existing one to filename~1. An existing file-
name~1 is renamed filename~2, etc. up to file-
name~9. An existing filename™9 is deleted. This
makes recovery from mistakes easier but also will
clutter up your directory, so occasionally you may
want to clean up (delete) these “n files.



5.3.1 read Command

Syntax: read file-name [/verify]

This command will read in a Metamath lan-
guage source file and any included files. Normally
it will be the first thing you do when entering
Metamath. Statement syntax is checked, but
proof syntax is not checked. Note that the file
name may be enclosed in single or double quotes;
this is useful if the file name contains slashes, as
might be the case under Unix.

If you are getting an “?Expected VERIFY” er-
ror when trying to read a Unix file name with
slashes, you probably haven’t quoted it.

If you are prompted for the file name (by
pressing return after read) you should not put
quotes around it, even if it is a Unix file name
with slashes.

Optional command qualifier:

/verify - Verify all proofs as the database is
read in. This qualifier will slow down reading in
the file. See verify proof for more information
on file error-checking.



See also erase.

5.3.2 write source Command

Syntax: write source filename [/clean)]

This command will write the contents of a
Metamath database into a file. Note: The present
version of Metamath (0.07.30) will not split the
database into its constituent source files included
with $[ and $] keywords. A future version is
planned to properly separate all constituent files.

Optional command qualifier (primarily in-
tended to assist web site updates):

/clean - Suppresses (deletes) the output of
any theorem that has been flagged with a ques-
tion mark (?) placed in or in place of the date
comment field at the end of its proof, for exam-
ple “$( [?31-0ct-00] $).” This lets you strip
out proofs under development so that a “clean”
version of the database can be generated for offi-
cial release. Note: Currently, hypotheses are not
stripped, only $p statements. Spurious date com-
ment fields of the suppressed theorems may also



remain. Be careful to use a different name for
the /clean version so that your work in progress
won’t be destroyed.

5.4 Showing Status and State
ments

5.4.1 show settings Command

Syntax: show settings
This command shows the state of various
parameters.

5.4.2 show memory Command

Syntax: show memory

This command shows the available memory
left. It is not be meaningful on most modern
operating systems, which have virtual memory.



5.4.3 show labels Command

Syntax: show labels label-match[/all] [/1linear

This command shows the labels of $a and
$p statements that match label-match. A * in
label-match matches zero or more characters. For
example, *abc*def will match all labels contain-
ing abc and ending with def.

Optional command qualifier:

/all - Include matches for $e and $f state-
ment labels.

/linear - Display only one label per line.
This can be useful for building scripts in conjunc-
tion with the utilities under the tools command.

5.4.4 show statement Command

Syntax: show statement label [qualifiers (see
below)]

This command provides information about a
statement. Only statements that have labels ($£,
$e, $a, and $p) may be specified. If label contains
wildcard (*) characters, all matching statements



will be displayed in the order they occur in the
database.

Optional qualifiers (only one qualifier at a
time is allowed):

/comment - This qualifier includes the com-
ment that immediately precedes the statement.

/full - Show complete information about
each statement, and show all statements match-
ing label (including $e and $f statements).

/tex - This qualifier will write the statement
information to the IXTEX file previously opened
with open tex. See Section[5.7]

/simple_tex - The same as /tex, except that
KETEX macros are not used for formatting equa-
tions, allowing easier manual edits of the output
for slide presentations, etc.

/html, /alt_html, /brief_html, /brief_alt
- These qualifiers invoke a special mode of show
statement that creates a web page for the state-
ment. They may not be used with any other
qualifier. See Section or help html in the
program.



5.4.5 search Command

Syntax: search label-match "symbol-match” [/
all] [/ comments]

This command searches all $a and $p state-
ments matching label-match for occurrences of
symbol-match. A * in label-match matches any
label character. A $x in symbol-match matches
any sequence of symbols. The symbols in symbol-
match must be separated by white space. The
quotes surrounding symbol-match may be single
or double quotes. For example, search b*x "-> $»
will list all statements whose labels begin with
b and contain the symbols => and ch surround-
ing any symbol sequence (including no symbol
sequence). The wildcards ? and $7? are also
available to match individual characters in la-
bels and symbols respectively; see help search
in the Metamath program for details on their
usage.

Optional command qualifiers:

/ all - Also search $e and $f statements.

/ comments - Search the comment that im-



mediately precedes each label-matched statement
for symbol-match. In this case symbol-match is
an arbitrary, non-case-sensitive character string.
Quotes around symbol-match are optional if there
is no ambiguity.

5.5 Displaying and Verifying
Proofs

5.5.1 show proof Command

Syntax: show proof label [qualifiers (see below)]

This command displays the proof of the spec-
ified $p statement in various formats. The label
may contain wildcard ($*) characters to match
multiple statements. Without any qualifiers, only
the logical steps will be shown (i.e. syntax con-
struction steps will be omitted), in an indented
format.

Most of the time, you will use show proof
label to see just the proof steps corresponding to
logical inferences.



Optional command qualifiers:

/essential - The proof tree is trimmed of
all $f hypotheses before being displayed. (This
is the default, and it is redundant to specify it.)

/all - the proof tree is not trimmed of all $f
hypotheses before being displayed. /essential
and /all are mutually exclusive.

/from_step step - The display starts at the
specified step. If this qualifier is omitted, the
display starts at the first step.

/to_step step - The display ends at the spec-
ified step. If this qualifier is omitted, the display
ends at the last step.

/tree_depth number - Only steps at less
than the specified proof tree depth are displayed.
Sometimes useful for obtaining an overview of
the proof.

/reverse - The steps are displayed in reverse
order.

/renumber - When used with /essential,
the steps are renumbered to correspond only to
the essential steps.

/tex - The proof is converted to KTEX and



stored in the file opened with open tex. See
Section or help tex in the program.

/lemmon - The proof is displayed in a non-
indented format known as Lemmon style, with
explicit previous step number references. If this
qualifier is omitted, steps are indented in a tree
format.

/start_column number - Overrides the de-
fault column at which the formula display starts
in a Lemmon-style display. May be used only in
conjunction with /lemmon.

/normal - The proof is displayed in normal
format suitable for inclusion in a Metamath source
file. May not be used with any other qualifier.

/compressed - The proof is displayed in com-
pressed format suitable for inclusion in a Meta-
math source file. May not be used with any other
qualifier.

/statement_summary - Summarizes all state-
ments (like a brief show statement) used by the
proof. It may not be used with any other qualifier
except /essential.

/detailed_step step - Shows the details of



what is happening at a specific proof step. May
not be used with any other qualifier. The step is
the step number shown when displaying a proof
without the /renumber qualifier.

5.5.2 show usage Command

Syntax: show usage label [/recursive]

This command lists the statements whose
proofs make direct reference to the statement
specified.

Optional command qualifier:

/recursive - Also include statements whose

proof ultimately depend on the statement speci-
fied.

5.5.3 show trace_back Command

Syntax: show trace_back [/essential] [/axioms
[/tree| [/depth number]
This command lists all statements that the
proof of the specified $p statement depends on.
Optional command qualifiers:



/essential - Restrict the trace-back to $e
hypotheses of proof trees.

/axioms - List only the axioms that the proof
ultimately depends on.

/tree - Display the trace-back in an indented
tree format.

/depth number - Restrict the /tree trace-
back to the specified indentation depth.

/count_steps - Counts the number of steps
the proof has all the way back to axioms. If
/essential is specified, expansions of variable-
type hypotheses (syntax constructions) are not
counted.

5.5.4 verify proof Command

Syntax: verify proof label-match [/syntax_only

This command verifies the proofs of the spec-
ified statements. label-match may contain wild
card characters (*) to verify more than one proof;
for example *abcxdef will match all labels con-
taining abc and ending with def. verify proof
* will verify all proofs in the database.



Optional command qualifier:

/syntax_only - This qualifier will perform a
check of syntax and RPN stack violations only.
It will not verify that the proof is correct. This
qualifier is useful for quickly determining which
proofs are incomplete (i.e. are under development
and have ?’s in them).

Note: read, followed by verify proof x,
will ensure the database is free from errors in
Metamath language but will not check the markup
notation in comments; for that see Section [5.8

5.5.5 save proof Command

Syntax: save proof label[/normal] [/compressec

The save proof command will reformat a
proof in one of two formats and replace the ex-
isting proof in the source buffer. It is useful for
converting between proof formats. Note that a
proof will not be permanently saved until a write
source command is issued.

Optional command qualifiers:

/normal - The proof is saved in the normal



format (i.e., as a sequence of labels, which is the
defined format of the basic Metamath language).
This is the default format that is used if a qualifier
is omitted.

/compressed - The proof is saved in the com-
pressed format which reduces storage require-
ments for a database. See Appendix [B]

5.6 Creating Proofs

Before using the Proof Assistant, you must add a
$p to your source file (using a text editor) contain-
ing the statement you want to prove. Its proof
should consist of a single 7, meaning “unknown
step.” Example:

equid $p x = x $= 7 $.

To enter the Proof assistant, type prove label,
e.g. prove equid. Metamath will respond with
the MM-PA> prompt.

Proofs are created working backwards from
the statement being proved, primarily using a
series of assign commands. A proof is complete



when all steps are assigned to statements and all
steps are unified and completely known. During
the creation of a proof, Metamath will allow only
operations that are legal based on what is known
up to that point. For example, it will not allow
an assign of a statement that cannot be unified
with the unknown proof step being assigned.

Important: You should figure out your first
few proofs completely and write them down by
hand, before using the Proof Assistant. Other-
wise you will become extremely frustrated. The
Proof Assistant is not a tool to help you discover
proofs. It is just a tool to help you add them
to the database. For a tutorial read Section 2.4l
To practice using the Proof Assistant, you may
want to prove an existing theorem, then delete
all steps with delete all, then re-create it with
the Proof Assistant while looking at its proof
display (before deletion).

Important: Keep track of your work with a
log file (open log) and save it frequently (save
new_proof, write source), because currently
there is no undo command! Hopefully there will



be an undo command will be in a future ver-
sion. However, you can use delete to reverse an
assign, and you can do delete floating_hypott
then initialize all, thenunify all /interac
to reinitialize bad unifications made accidentally
or by bad assigns. You cannot reverse a delete
except by exit /force then reentering the Proof
Assistant to recover from the last save new_proof.

The following commands available in the Proof
Assistant (at the MM-PA> prompt) to help you cre-
ate your proof. See the individual commands for
more detail.

show new_proof [/all,...] - Displays the
proof in progress. You will use this com-
mand a lot; see help show new_proof to
become familiar with its qualifiers. The
qualifiers /unknown and /not_unified are
useful for seeing the work remaining to be
done. The combination /all/unknown is
useful identifying dummy variables that
must be assigned, or attempts to use il-
legal syntax, when improve all is unable



to complete the syntax constructions. Un-
known variables are shown as $1, $2....

assign step label - Assigns an unknown
step number with the statement specified

by label.

let variable variable = "symbol sequence"
- Forces a symbol sequence to replace an

unknown variable (such as $1) in a proof.

It is useful for helping difficult unifications,

and it is necessary when you have dummy

variables that eventually must be assigned

a name.

let step step = "symbol sequence" - Forces
a symbol sequence to replace the contents
of a proof step, provided it can be unified
with the existing step contents. (I rarely
use this.)

unify step step (or unify all) - Unifies
the source and target of a step. If you
specify a specific step, you will be prompted



to select among the unifications that are
possible. If you specify all, all steps with
unique unifications, but only those steps,
will be unified. unify all /interactive
goes through all non-unified steps.

initialize step (or all) - De-unifies the
target and source of a step (or all steps), as
well as the hypotheses of the source, and
makes all variables in the source unknown.
Useful to recover from an assign or let
mistake that resulted in incorrect unifica-
tions.

delete step (or all or floating_hypothese
- Deletes the specified step(s). delete float
then initialize all, thenunify all /in
is useful for recovering from mistakes where
incorrect unifications assigned wrong math
symbol strings to variables.

improve step (or all) - Automatically cre-
ates a proof for steps (with no unknown



variables) whose proof requires no state-
ments with $e hypotheses. Useful for fill-
ing in proofs of $f hypotheses. The /depth
qualifier will also try statements whose $e
hypotheses contain no new variables. Warn-
ing: Save your work (with save new_proof
then write source) before using /depth
= 2 or greater, since the search time grows
exponentially and may never terminate in a
reasonable time, and you cannot interrupt
the search. I have found that it is rare for
/depth = 3 or greater to be useful.

save new_proof - Saves the proof in progres:
in the program’s internal database buffer.
To save it permanently into the database
file, use write source after save new_proo
To revert to the last save new_proof, exit
/force from the Proof Assistant then re-
enter the Proof Assistant.

match step step (or match all) - Shows
what statements are possibilities for the



assign statement. (This command is not
very useful in its present form and hope-
fully will be improved eventually. In the
meantime, use the search statement for
candidates matching specific math token
combinations.)

minimize_with - After a proof is complete,
this command will attempt to match other
database theorems to the proof to see if
the proof size can be reduced as a result.
See help minimize_with in the Metamath
program for its usage.

The following commands set parameters that
may be relevant to your proof. Consult the indi-
vidual help set... commands.

set unification_timeout
set search_limit

set empty_substitution - note that de-
fault is of f



Type exit to exit the MM-PA> prompt and
get back to the MM> prompt. Another exit will
then get you out of Metamath.

5.6.1 prove Command

Syntax: prove label

This command will enter the Proof Assistant,
which will allow you to create or edit the proof
of the specified statement. The command-line
prompt will change from MM> to MM-PA>.

Note: In the present version of Metamath
(0.07.30), the Proof Assistant does not verify
that $d restrictions are met as a proof is being
built. After you have completed a proof, you
should type save new_proof followed by verify
proof label (where label is the statement you are
proving with the prove command) to verify the
$d restrictions.

See also: exit



5.6.2 set unification timeout Com
mand

Syntax: set unification_timeout number

(This command is available outside the Proof
Assistant but affects the Proof Assistant only.)

Sometimes the Proof Assistant will inform
you that a unification time-out occurred. This
may happen when you try to unify formulas with
many temporary variables ($1, $2, etc.), since
the time to compute all possible unifications may
grow exponentially with the number of variables.
If you want Metamath to try harder (and you're
willing to wait longer) you may increase this
parameter. show settings will show you the
current value.

5.6.3 set empty_substitution Com-
mand

Syntax: set empty_substitution on or set
empty_substitution off



(This command is available outside the Proof
Assistant but affects the Proof Assistant only.)

The Metamath language allows variables to
be substituted with empty symbol sequences.
However, in many formal systems this will never
happen in a valid proof. Allowing for this possi-
bility increases the likelihood of ambiguous unifi-
cations during proof creation, and you may want
to set empty_substitution off to help make
the process more efficient. With this mode set,
you may not be able to create some proofs in for-
mal systems that allow empty substitutions. (An
example would be a system that implements a De-
duction Rule and in which deductions from empty
assumption lists would be permissible. The MIU-
system described in Appendix [D]is another ex-
ample.)

Note that this command does not affect the
way proofs are verified with the verify proof
command. Outside of the Proof Assistant, sub-
stitution of empty sequences for math symbols is
always allowed.



5.6.4 set search limit Command

Syntax: set search_limit number

(This command is available outside the Proof
Assistant but affects the Proof Assistant only.)

This command sets a parameter that deter-
mines when the improve command in Proof As-
sistant mode gives up. If you want improve to
search harder, you may increase it. The show
settings command tells you its current value.

5.6.5 show new proof Command

Syntax: show new_proof [qualifiers (see below)]

This command (available only in Proof As-
sistant mode) displays the proof in progress. It
is identical to the show proof command, except
that there is no statement argument (since it is
the statement being proved) and following quali-
fiers are not available:

/statement_summary

/detailed_step

Also, the following additional qualifiers are



available:

/unknown - Shows only steps that have no
statement assigned.

/not_unified - Shows only steps that have
not been unified.

Note that /essential, /depth, /unknown,
and /not_unified may be used in any combina-
tion; each of them effectively filters out additional
steps from the proof display.

See also: show proof

5.6.6 assign Command

Syntax: assign step label

and: assign first label

and: assign last label

This command, available in the Proof Assis-
tant only, assigns an unknown step (one with 7 in
the show new_proof listing) with the statement
specified by label. The assignment will not be
allowed if the statement cannot be unified with
the step.



If last is specified instead of step number,
the last step that is shown by show new_proof
/unknown will be used. This can be useful for
building a proof with a command file (see help
submit). It also makes building proofs faster
when you know the assignment for the last step.

If first is specified instead of step number,
the first step that is shown by show new_proof
/unknown will be used.

If step is zero or negative, the -stepth from
last unknown step, as shown by show new_proof
/unknown, will be used. assign -1 label will
assign the penultimate unknown step, assign
-2 label the antepenultimate, and assign 0 label
is the same as assign last label.

Optional command qualifier:

/no_unify - do not prompt user to select a
unification if there is more than one possibility.
This is useful for noninteractive command files.
Later, the user can unify all /interactive.
(The assignment will still be automatically unified
if there is only one possibility and will be refused
if unification is not possible.)



5.6.7 match Command

Syntax: match step step [/max_essential_hyp
number]

and: match all [/essential|[/max_essenti:
number]

This command, available in the Proof Assis-
tant only, shows what statements can be unified
with the specified step(s). Note: In its current
form, this command is not very useful because of
the large number of matches it reports. I rarely
use it. It may be enhanced in the future.

Optional command qualifiers:

/max_essential_hyp number - filters out of
the list any statements with more than the spec-
ified number of $e hypotheses

/essential_only - in the match all state-
ment, only the steps that would be listed in show
new_proof /essential display are matched.

5.6.8 let Command

Syntax: let variable variable = " symbol-sequenc



and: let step step = "symbol-sequence"

These commands, available in the Proof As-
sistant only, assign a temporary variable or un-
known step with a specific symbol sequence. They
are useful in the middle of creating a proof, when
you know what should be in the proof step but
the unification algorithm doesn’t yet have enough
information to completely specify the temporary
variables. A “temporary variable” is one that
has the form $nn in the proof display, such as $1,
$2, etc. The symbol-sequence may contain other
unknown variables if desired. Examples:

let variable $32 = "A = B"

let variable $32 = "A = $35"
let step 10 = |- x = x’

let step -2 = "|- ( $7 = ph )"

Any symbol sequence will be accepted for the
let variable command. Only those symbol
sequences that can be unified with the step will
be accepted for let step.

The let commands “zap” the proof with in-
formation that can only be verified when the
proof is built up further. If you make an error, the



command sequence delete floating_hypothese
initialize all,andunify all /interactive
will undo a bad let assignment.

If step is zero or negative, the -stepth from
last unknown step, as shown by show new_proof
/unknown, will be used. The command let step
0 = "symbol-sequence" will use the last unknown
step, let step -1 = "symbol-sequence" the penul-
timate, etc. If step is positive, let step may be
used to assign known (in the sense of having pre-
viously been assigned a label with assign) as
well as unknown steps.

Either single or double quotes can surround
the symbol-sequence as long as they are different
from any quotes inside of symbol-sequence. If
symbol-sequence contains both kinds of quotes,
see the instructions at the end of help let in
the Metamath program.

5.6.9 unify Command

Syntax: unify step step
and: unify all [/interactive]



These commands, available in the Proof As-
sistant only, unify the source and target of the
specified step(s). If you specify a specific step,
you will be prompted to select among the uni-
fications that are possible. If you specify all,
only those steps with unique unifications will be
unified.

Optional command qualifier for unify all:

/interactive - You will be prompted to se-
lect among the unifications that are possible for
any steps that do not have unique unifications.
(Otherwise unify all will bypass these.)

See also set unification_timeout. The de-
fault is 100000, but increasing it to 1000000 can
help difficult cases. Manually assigning some
or all of the unknown variables with the let
variable command also helps difficult cases.

5.6.10 initialize Command

Syntax: initialize step step
and: initialize all
These commands, available in the Proof As-



sistant only, “de-unify” the target and source of
a step (or all steps), as well as the hypotheses of
the source, and makes all variables in the source
and the source’s hypotheses unknown. This com-
mand is useful to help recover from incorrect uni-
fications that resulted from an incorrect assign,
let, or unification choice. Part or all of the com-
mand sequence delete floating_hypotheses,
initialize all, and unify all /interactive
will cover from incorrect unifications.
See also: unify and delete

5.6.11 delete Command

Syntax: delete step step

and: delete all — Warning: dangerous!

and: delete floating_hypotheses

These commands are available in the Proof As-
sistant only. The delete step command deletes
the proof tree section that branches off of the spec-
ified step and makes the step become unknown.
delete all is equivalent to delete step step
where step is the last step in the proof (i.e. the



beginning of the proof tree).

There is currently no undo command, and you
cannot reverse a delete. The best you can do is
salvage your last save new_proof by exiting and
reentering the Proof Assistant. For this reason,
it is important to keep a log file open to record
your work and to do save new_proof frequently,
especially before delete.

delete floating_hypotheses will delete all
sections of the proof that branch off of $f state-
ments. It is sometimes useful to do this before an
initialize command to recover from an error.
Note that once a proof step with a $£ hypothesis
as the target is completely known, the improve
command can usually fill in the proof for that
step. Unlike the deletion of logical steps, delete
floating_hypotheses is a relatively safe com-
mand that is usually easy to recover from.

5.6.12 improve Command

Syntax: improve step [/depth number] [/no_dist]
and: improve first [/depth number| [/no_di



and: improve last [/depth number] [/no_dis

and: improve all [/depth number] [/no_dist

These commands, available in the Proof As-
sistant only, try to find proofs automatically for
unknown steps whose symbol sequences are com-
pletely known. They are primarily useful for
filling in proofs of $f hypotheses. The search
will be restricted to statements having no $e
hypotheses.

Note: If memory is limited, improve allona
large proof may overflow memory. If you use set
unification_timeout 1 before improve all, the
will usually be sufficient improvement to easily re-
cover and completely improve the proof later on
a larger computer. Warning: Once memory has
overflowed, there is no recovery. If in doubt, save
the intermediate proof (save new_proof then
write source) before improve all.

If last is specified instead of step number,
the last step that is shown by show new_proof
/unknown will be used.

If first is specified instead of step number,
the first step that is shown by show new_proof



/unknown will be used.

If step is zero or negative, the -stepth from
last unknown step, as shown by show new_proof
/unknown, will be used. improve -1 will use the
penultimate unknown step, improve -2 label the
antepenultimate, and improve O is the same as
improve last.

Optional command qualifier:

/depth number - This qualifier will cause the
search to include statements with $e hypothe-
ses (but no new variables in the $e hypotheses),
provided that the backtracking has not exceeded
the specified depth. Warning: Try /depth 1,
then 2, then 3, etc in sequence because of possi-
ble exponential blowups. Save your work before
trying /depth greater than 1! /no_distinct -
Skip trial statements that have $d requirements.
This qualifier will prevent assignments that might
violate $d requirements but it also could miss pos-
sible legal assignments.

See also: set search_limit



5.6.13 save new proof Command

Syntax: save new_proof [abel [/normal] [/compre

The save new_proof command is available
in the Proof Assistant only. It saves the proof in
progress in the source buffer. save new_proof
may be used to save a completed proof, or it
may be used to save a proof in progress in order
to work on it later. If an incomplete proof is
saved, any user assignments with let step or
let variable will be lost, as will any ambiguous
unifications that were resolved manually. To
help make recovery easier, it can be helpful to
improve all before save new_proof so that the
incomplete proof will have as much information
as possible.

Note that the proof will not be permanently
saved until a write source command is issued.

Optional command qualifiers:

/normal - The proof is saved in the normal
format (i.e., as a sequence of labels, which is the
defined format of the basic Metamath language).
This is the default format that is used if a qualifier



is omitted.

/compressed - The proof is saved in the com-
pressed format, which reduces storage require-
ments for a database. (See Appendix [B])

5.7 Creating ETEX Output

The show statement and show proof commands
each have a special /tex command qualifier that
produces TEX output. (The show statement
command also has the /simple_tex qualifier for
output that is easier to edit by hand.) Before
you can use them, you must open a KTEX file
to which to send their output. A typical com-
plete session will use this sequence of Metamath
commands:

read set.mm

open tex example.tex

show statement ali /tex

show proof ali /lemmon/renumber/tex
show statement uneq2 /tex

show proof uneq2 /lemmon/renumber/tex
close tex



See Section [4.4.1] for information on comment
markup and Appendix [A] for information on how
math symbol translation is specified.

To format and print the IXTEX source, you
will need the IXTEX program, which is standard
on most Linux installations and available for Win-
dows. On Linux, in order to create a PDF file,
you will typically type at the shell prompt

$ pdflatex example.tex

5.7.1 open tex Command

Syntax: open tex file-name [/no_header]

This command opens a file for writing IXTEX
source and writes a I¥TEX header to the file.
ITEX source can be written with the show proof,
show new_proof, and show statement command:
using the /tex qualifier.

The mapping to IXTEX symbols is defined in a
special comment containing a $t token, described
in Appendix [A]

Optional command qualifier:



/no_header - This qualifier prevents a stan-
dard BKTEX header and trailer from being included
with the output KTEX code.

5.7.2 close tex Command

Syntax: close tex

This command writes a trailer to any IXTEX
file that was opened with open tex (unless /no_he.
was used with open tex) and closes the KTEX
file.

5.8 Creating HT'ML Output

The ability to produce HTML web pages is new
in Metamath version 0.07.30.

To create an HTML output file for a $a or $p
statement, use

show statement label /html

The output file will be named label.html. When
label has wildcard (*) characters, all statements



with matching labels will have HTML files pro-

duced for them. Also, when label has a wildcard

(*) character, two additional files, nmdefinitions.
and mmascii.html will be produced. To produce

only these two additional files, you can use 7%,

which will not match any statement label, in

place of label.

There are three other qualifiers for show stater
that also generate HT'ML code. These are /alt_ht
/brief_html, and /brief_alt_html, and are
described in the next section.

A statement’s comment can include a special
notation that provides a certain amount of con-
trol the HTML version of the comment. See
Section (p. for the comment markup
features.

The write theorem_list and write bibliog
commands, which are described below, provide
as a side effect complete error checking for all of
the features described in this section. (Currently
there is no separate command to check for these
erTors. )



5.8.1 The Typesetting Comment
($t)

The HTML definitions for math symbols, as well
as some customization of the generated web page,
are specified by statements in a special typeset-
ting comment in the input database file. The
typesetting comment is identified by the token
$t in the comment, and the typesetting state-
ments run until the next $):

$C $t $)

N J/

HTML definitions go here

In version 0.07.30 of the Metamath program,
there may be only one $t comment in a database.
See the set.mm database file for an extensive
example of a $t comment illustrating all of the
features described below. In the HTML definition
section, C-style comments /*. .. */ are recognized.
The main HTML specification statements are:

htmldef "math-token" as "HTML-code" ;



htmldef "math-token" as "HTML-code" ;
htmltitle "HTML-code" ;

htmlhome "HTML-code" ;

htmlvarcolors "HTML-code" ;
htmlbibliography "filename" ;

The htmltitle is the HTML code for a common
title, such as “Metamath Proof Explorer.” The
htmlhome is code for a link back to the home
page. The htmlvarcolors is code for a color key
that appears at the bottom of each proof. The
file specified by filename is an HTML file that is
assumed to have a <A NAME=...> tag for each
bibiographic reference in the database comments.
For example, if [Monk] occurs in the comment
for a theorem, then <A NAME=’Monk’> must be
present in the file; if not, a warning message is
given.

Single or double quotes surround the HTML-
code strings and the filename string. Strings too
long for a line may be broken up as descibed for
the latexdef statement in Appendix [A]l That
Appendix also describes how to handle strings



containing quote characters.

The $t comment may also contain IXTEX
definitions (with latexdef statements—see Ap-
pendix |A)) that are ignored for HTML output.

Several other HTML-related qualifiers exist for
the show statement command. The command

show statement label /alt_html

does the same as show statement label /html,
except that the HTML code for the symbols is
taken from althtmldef statements instead of
htmldef statements in the $t comment.

althtmldef "math-token" as "HTML-code"

althtmldef "math-token" as "HTML-code"

This feature is useful when an alternate repre-
sentation of symbols is desired, for example one
that uses Unicode entities instead of GIF images.
Associated with althtmldef are the statements

htmldir "directoryname" ;



althtmldir "directoryname" ;

giving the directories of the GIF and Unicode
versions respectively; their purpose is to provide
cross-linking between the two versions in the
generated web pages.

The command

show statement * /brief_html

invokes a special mode that just produces defi-

nition and theorem lists accompanied by their

symbol strings, in a format suitable for copying

and pasting into another web page (such as the

tutorial pages on the Metamath web site).
Finally, the command

show statement * /brief_alt_html

does the same as show statement * / brief_htr
for the alternate HTML symbol representation.

When two different types of pages need to
be produced from a single database, such as the
Hilbert Space Explorer that extends the Meta-
math Proof Explorer, “extended” variables may
be declared in the $t comment:



exthtmltitle "HTML-code" ;
exthtmlhome "HTML-code" ;
exthtmlbibliography "filename" ;

When these are declared, you also must declare
exthtmllabel "label" ;

that identifies the database statement where the
“extended” section of the database starts (in our
example, where the Hilbert Space Explorer starts).
During the generation of web pages for that
starting statement and the statements after it,
the HTML code assigned to exthtmltitle and
exthtmlhome is used instead of that assigned to
htmltitle and htmlhome, respectively.

If you want to become familiar with these
features, you should study them in conjunction
with the set.mm database example, in order to
understand the details that aren’t precisely spec-
ified above, such as exactly what the HTML code
snippets should look like.



5.8.2 write theorem list Commanc

Syntax: write theorem_list [/theorems_per_p
number]

This command writes a list of all of the $a and
$p statements in the database into a web page file
called mmtheorems.html. When additional files
are needed, they are called mmtheorems2.html,
mmtheorems3.html, etc.

Optional command qualifier:

/theorems_per_page number - This qualifier
specifies the number of statements to write per
web page. The default is 100.

Note: In version 0.07.30 of Metamath, the
“Related Theorems” links on the individual web
pages presuppose 100 theorems per page when
linking to the theorem list pages. Therefore the
/theorems_per_page qualifier, if it specifies a
number other than 100, will cause the individual
web pages to be out of sync and should not be
used to generate the main theorem list for the
web site. This is expected to be fixed in a future
version.



5.8.3 write bibliography Commane

Syntax: write bibliography filename

This command reads an existing HTML bib-
liographic cross-reference file, normally called
mmbiblio.html, and updates it per the biblio-
graphic links in the database comments. The
file is updated between the HTML comment lines
<!-- #START# --> and <!-- #END# -->. The
original input file is renamed to filename™1.

A bibliographic reference is indicated with the
reference name in brackets, such as Theorem 3.1
of [Monk] p. 22. See Section [1.4.2] (p. 328) for

syntax details.

5.8.4 write recent_additions Com-
mand

Syntax: write recent_additions filename [/1im
number]

This command reads an existing “Recent Ad-
ditions” HTML file, normally called mmrecent . html
and updates it with the descriptions of the most



recently added theorems to the database. The
file is updated between the HTML comment lines
<!-— #START# --> and <!-- #END# -->. The
original input file is renamed to filename™1.

Optional command qualifier:

/limit number - This qualifier specifies the
number of most recent theorems to write to the
output file. The default is 100.

5.9 Text File Utilities

5.9.1 tools Command

Syntax: tools

This command invokes an easy-to-use, gen-
eral purpose utility for manipulating the con-
tents of ASCII text files. Upon typing tools, the
command-line prompt will change to TOOLS> un-
til you type exit. The tools commands can
be used to perform simple, global edits on an
input/output file, such making a character string
substitution on each line, adding a string to each



line, and so on. A typical use of this utility is to
build a submit input file to perform a common
operation on a list of statements obtained from
show label or show usage.

The actions of most of the tools commands
can also be performed with equivalent (and more
powerful) Unix shell commands, and some users
may find those more efficient. But for Windows
users or users not comfortable with Unix, tools
provides an easy-to-learn alternative that is ade-
quate for most of the script-building tasks needed
to use the Metamath program effectively.

5.9.2 help Command (in tools)

Syntax: help

The help command lists the commands avail-
able in the tools utility, along with a brief de-
scription. Each command, in turn, has its own
help, such as help add. As with Metamath’s MM>
prompt, a complete command can be entered at
once, or just the command word can be typed,
causing to program to prompt for each argument.



Line-by-line editing commands:

add - Add a specified string to each line in a
file.

clean - Trim spaces and tabs on each line in
a file; convert characters.

delete - Delete a section of each line in a file.

insert - Insert a string at a specified column
in each line of a file.

substitute - Make a simple substitution on
each line of the file.

swap - Swap the two halves of each line in a
file.

Other file processing commands:

break - Break up (parse) a file into a list of
tokens (one per line).

build - Build a file with multiple tokens per
line from a list.

count - Count the occurrences in a file of a
specified string.

number - Create a list of numbers.

parallel - Put two files in parallel.

reverse - Reverse the order of the lines in a



file.

right - Right-justify lines in a file (useful
before sorting numbers).

sort - Sort the lines in a file with key starting
at specified string.

match - Extract lines containing (or not) a
specified string.

unduplicate - Eliminate duplicate occurrences
of lines in a file.

duplicate - Extract first occurrence of any
line occurring more than

once in a file, discarding lines occurring

exactly once.

unique - Extract lines occurring exactly once
in a file.

type (10 lines) - Display the first few lines in
a file. Similar to Unix head.

copy - Similar to Unix cat but safe (same
input and output file allowed).

submit - Run a script containing tools com-
mands.

Note: unduplicate, duplicate, and unique also



sort the lines as a side effect.

5.9.3 Using tools to Build Meta-
math submit Scripts

The break command is typically used to break up
a series of statement labels, such as the output of
Metamath’s show usage, into one label per line.
The other tools commands can then be used
to add strings before and after each statement
label to specify commands to be performed on
the statement. The parallel command is useful
when a statement label must be mentioned more
than once on a line.

Very often a submit script for Metamath will
require multiple command lines for each state-
ment being processed. For example, you may
want to enter the Proof Assistant, minimize_with
your latest theorem, save the new proof, and
exit the Proof Assistant. To accomplish this,
you can build a file with these four commands
for each statement on a single line, separating



each command with a designated character such
as @. Then at the end you can substitute each
@ with \n to break up the lines into individual
command lines (see help substitute).

5.9.4 Example of a tools Session

To give you a quick feel for the tools utility,
we show a simple session where we create a file
n.txt with 3 lines, add strings before and after
each line, and display the lines on the screen.
You can experiment with the various commands
to gain experience with the tools utility.

MM> tools

Entering the Text Tools utilities.

Type HELP for help, EXIT to exit.

TOOLS> number

Output file <n.tmp>?7 n.txt

First number <1>7

Last number <10>7 3

Increment <1>7

TOOLS> add

Input/output file? n.txt

String to add to beginning of each
line <>7 This 1is 1line



String to add to end of each line <>7

The file n.txt has 3 lines; 3 were
changed.

First change is on line 1:

This is line 1.

TOOLS> type n.txt

This is line 1.

This is line 2.

This is line 3.

TOOLS> exit

Exiting the Text Tools.

Type EXIT again to exit Metamath.

MM >



Appendix A

Math Symbol
Tokens for Set
Theory

This Appendix lists the tokens (math symbols)
used for basic set theory development (up to
complex numbers) in the set.mm database, in
order of appearance. Next to each token we show
the mathematical symbol that corresponds to
it. The set.mm file has an explanation of the



meaning of each symbol. (New definitions are
added to set.mm over time. Consult the latest
version at http://metamath.org for the most
recent additions.)

These symbols are defined in the set .mm databa
file inside of a special comment, which is indi-
cated by the appearance of the two-character
string $t at the beginning of the comment (see
Section , p. . This special comment is
called a $t comment or typesetting comment.

The definitions in the $t comment are refer-
enced by the write tex command to produce
KETEX output. If you add a new token to the
set theory database (or your own database), you
should also update the $t comment if you want
to create a IXTEX output file. The $t comment is
not needed for normal operation of the Metamath
program, but is referenced only when you open a
KETEX output file with the open tex command.
The $t comment consists of a series of KIEX
definitions with the following syntax:

latexdef token-string as latex-string ;


http://metamath.org

The fields are separated by white space (blanks,
carriage returns, etc.), although white space is
not needed before the ; terminator. Each defini-
tion should start on a new lineE] For example,

latexdef "(_" as "\subseteq";

defines the token (_ as the KTEX symbol C
(which means “subset”).

The token-string and latez-string are the char-
acter strings for the token and the IXTEX defini-
tion of the token, respectively, enclosed in either
double (") or single (?) quotation marks. The
string enclosed in quotation marks may not in-
clude line breaks. A token-string or latex-string
may include a quotation mark that matches the
enclosing quotes by repeating the quotation mark
twice; for example the token-strings

Ilall Ilbll
,C’ 7d)

! This restriction of the current version of Metamath
(0.07.30) may be removed in a future version, but you
should do it anyway for readability.



l|e) 7fl|
)glllth

specify the tokens a"b, c’d, e’’f, and g""h re-
spectively. Finally, a long latez-string may be
broken up into multiple quote-enclosed strings
joined by + in order to fit them on several lines;
thus

llabll + IICd" + Jef)
is the same as
"abcdef"

The $t comment may also contain htmldef
statements, althtmldef statements, and some
other types of statements related to the genera-
tion of HTML pages for the Metamath web site.
The syntax for these is not yet final, and for cur-
rent information you should consult help html
in the Metamath program. Importantly, when-
ever you add a latexdef statement, you should
also add a new htmldef statement and a new
althtmldef statement to keep all symbol defini-
tions up to date.
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Appendix B

Compressed Proofs

The proofs in the set.mm set theory database
are stored in compressed format for efficiency.
Normally you needn’t concern yourself with the
compressed format, since you can display it with
the usual proof display tools in the Metamath
program (show proof...) or convert it to the
normal RPN proof format described in the Sec-
tion [4.3] (with save proof label /normal). How-
ever for sake of completeness we describe the
format here and show how it maps to the normal



RPN proof format.

A compressed proof, located between $= and
$. keywords, consists of a left parenthesis, a
sequence of statement labels, a right parenthesis,
and a sequence of upper-case letters A through Z
(with optional white space between them). White
space must surround the parentheses and the
labels. The left parenthesis tells Metamath that
a compressed proof follows. (A normal RPN
proof consists of just a sequence of labels, and a
parenthesis is not a legal character in a label.)

The sequence of upper-case letters corresponds
to a sequence of integers with the following map-
ping. Each integer corresponds to a proof step
as described later.

A=1
B =2
T =20
UA =21



UT = 40

VA = 41
VB = 42
YT = 120
UUA = 121
YYT = 620
UUUA = 621
ete.

In other words, A through T represent a least-
significant digit in base 20, and U through Y rep-
resent zero or more most-significant digits in base
5, where the digits start counting at 1 instead
of the usual 0. With this scheme, we don’t need
white space between these “numbers.”

(In the design of the compressed proof for-
mat, only upper case letters, as opposed to say
all printable AsciI characters other than $, were
chosen so as not to collide with most text ed-
itor searches, at the expense of a typical 20%
compression loss. The base 5/base 20 grouping,



as opposed to say base 6/base 19, was chosen
by experimentally determining the grouping that
resulted in best typical compression.)

The letter Z identifies (tags) a proof step that
is identical to one that occurs later on in the
proof; it helps shorten the proof by not requiring
that identical proof steps be proved over and
over again (which happens often when building
wit’s). The Z is placed immediately after the
least-significant digit (letters A through T) that
ends the integer corresponding to the step to
later be referenced.

The integers that the upper-case letters cor-
respond to are mapped to labels as follows. If
the statement being proved has m mandatory hy-
potheses, integers 1 through m correspond to the
labels of these hypotheses in the order shown by
the show statement ... / full command, i.e..
the RPN order of the mandatory hypotheses. In-
tegers m + 1 through m + n correspond to the
labels enclosed in the parentheses of the com-
pressed proof, in the order that they appear,
where n is the number of those labels. Integers



m-+n+1 on up don’t directly correspond to state-
ment labels but point to proof steps identified
with the letter Z, so that these proof steps can be
referenced later in the proof. Integer m +n + 1
corresponds to the first step tagged with a Z,
m + n + 2 to the second step tagged with a Z,
etc. When the compressed proof is converted
to a normal proof, the entire subproof of a step
tagged with Z replaces the reference to that step.
For efficiency, Metamath works with com-
pressed proofs directly, without converting them
internally to normal proofs. In addition to the
usual error-checking, an error message is given
if (1) a label in the label list in parentheses does
not refer to a previous $p or $a statement or a
non-mandatory hypothesis of the statement be-
ing proved and (2) a proof step tagged with Z is
referenced before the step tagged with the Z.
Just as in a normal proof under development
(Section [4.4.5)), any step or subproof that is not
yet known may be represented with a single 7.
White space does not have to appear between
the 7 and the upper-case letters (or other ?’s)



representing the remainder of the proof.



Appendix C

Metamath’s Formal
System

C.1 Introduction

Perfection is when there is no longer
anything more to take away.

ANTOINE DE SAINT-EXUPERY]

[, p. 3-25]



This appendix describes the theory behind the
Metamath language in an abstract way intended
for mathematicians. Specifically, we construct
two set-theoretical objects: a “formal system”
(roughly, a set of syntax rules, axioms, and logi-
cal rules) and its “universe” (roughly, the set of
theorems derivable in the formal system). The
Metamath computer language provides us with a
way to describe specific formal systems and, with
the aid of a proof provided by the user, to verify
that given theorems belong to their universes.

To understand this appendix, you need a ba-
sic knowledge of informal set theory. It should
be sufficient to understand, for example, Ch. 1
of Munkres’ Topology [41] or the introductory
set theory chapter in many textbooks that intro-
duce abstract mathematics. (Note that there are
minor notational differences among authors; e.g.
Munkres uses C instead of our C for “subset.”
We use “included in” to mean “a subset of,” and
“belongs to” or “is contained in” to mean “is an
element of.”) What we call a “formal” descrip-
tion here, unlike earlier, is actually an informal



description in the ordinary language of mathe-
maticians. However we provide sufficient detail
so that a mathematician could easily formalize it,
even in the language of Metamath itself if desired.
To understand the logic examples at the end of
this appendix, familiarity with an introductory
book on mathematical logic would be helpful.

C.2 The Formal Description

C.2.1 Preliminaried

By w we denote the set of all natural numbers
(non-negative integers). Each natural number
n is identified with the set of all smaller num-
bers: n = {m|m < n}. The formula m < n
is thus equivalent to the condition: m € n and
m,n € w. In particular, 0 is the number zero
and at the same time the empty set @, 1 = {0},
2 = {0,1}, etc. BA denotes the set of all func-

2This section is taken mostly verbatim from Tarski
[61l p. 63].



tions on B to A (i.e. with domain B and range
included in A). The members of ¥ A are what are
called simple infinite sequences, with all terms
in A. In case n € w, the members of "A are re-
ferred to as finite n-termed sequences, again with
terms in A. The consecutive terms (function
values) of a finite or infinite sequence f are de-
noted by fo, fi,..., fa,.... Every finite sequence
[ € Uye, "A uniquely determines the number
n such that f € "A; n is called the length of
f and is denoted by |f|. (a) is the sequence f
with |f|= 1 and fy = a; (a,b) is the sequence
f with |f|= 2, fo = a, fi = b; etc. Given two
finite sequences f and g, we denote by f —~ ¢
their concatenation, i.e., the finite sequence h
determined by the conditions:

|h|= | fI+gl;
hy = fa for n < |f];
Rifj4n = gn  forn <|g|.



C.2.2 Constants, Variables, and Ex
pressions

A formal system has a set of symbols denoted by
SM. A precise set-theoretical definition of this
set is unimportant; a symbol could be considered
a primitive or atomic element if we wish. We as-
sume this set is divided into two disjoint subsets:
a set CN of constants and a set VR of variables.
CN and VR are each assumed to consist of count-
ably many symbols which may be arranged in
finite or simple infinite sequences ¢y, c1, ... and
Vg, U1, - . . Tespectively, without repeating terms.
We will represent arbitrary symbols by metavari-
ables «a, [, etc.

Comment. The variables vg,vq,... of
our formal system correspond to what are
usually considered “metavariables” in de-
scriptions of specific formal systems in the
literature. Typically, when describing a spe-
cific formal system a book will postulate
a set of primitive objects called variables,
then proceed to describe their properties
using metavariables that range over them,



never mentioning again the actual variables
themselves. Our formal system does not
mention these primitive variable objects at
all but deals directly with metavariables, as
its primitive objects, from the start. This is
a subtle but key distinction you should keep
in mind, and it makes our definition of “for-
mal system” somewhat different from that
typically found in the literature. (So, the «,
B, etc. above are actually “metametavari-
ables” when used to represent vy, v, . . ..)

Finite sequences all terms of which are sym-
bols are called expressions. EX is the set of all
expressions; thus

EX = U " SM.

new

A constant-prefived expression is a an expres-
sion of non-zero length whose first term is a con-
stant. We denote the set of all constant-prefixed
expressions by EX¢c = {e € EX|(le|]> 0 A ey €
CN)}.

A constant-variable pair is an expression of
length 2 whose first term is a constant and whose



second term is a variable. We denote the set
of all constant-variable pairs by EXy; = {e €
EXc|(le|l=2ANe; € VR)}.

Relationship to Metamath. In general,
the set SM corresponds to the set of declared
math symbols in a Metamath database, the
set CN to those declared with $c statements,
and the set VR to those declared with $v
statements. Of course a Metamath database
can only have a finite number of math sym-
bols, whereas formal systems in general can
have an infinite number, although the num-
ber of Metamath math symbols available is
in principle unlimited.

The set EX¢c corresponds to the set of
permissible expressions for $e, $a, and $p
statements. The set EX, corresponds to
the set of permissible expressions for $f
statements.

We denote by V(e) the set of all variables in
an expression e € FX, i.e. the set of all « € VR
such that a = e, for some n < |e|. We also
denote (with abuse of notation) by V(F) the
set of all variables in a collection of expressions

E C EX, ie. J,.pV(e).



C.2.3 Substitution

Given a function F' from VR to EX, we denote by
or or just o the function from FX to EX defined
recursively for nonempty sequences by

o(<a>)=Fa for a € VR;
o<a>)=<a> for a € VR;
o(g ~h)=0(9) ~o(h) for g,h € EX.

We also define o(2) = @. We call o a simul-
taneous substitution (or just substitution) with
substitution map F.

We also denote (with abuse of notation) by
o(FE) a substitution on a collection of expressions
E C EXi.e. theset {o(e)le € E}. The collection
o(E) may of course contain fewer expressions
than E because duplicate expressions could result
from the substitution.

C.2.4 Statements

We denote by DV the set of all unordered pairs
{a,f} € VR such that o # 5. DV stands for



“distinct variables.”

A pre-statement is a quadruple (D, T, H, A)
such that D C DV, T C EXy,, H C EXs and
H is finite, A € EXg, V(H U {A}) C V(T), and
Ve, f € T V(e) # V(f) (or equivalently, e; # fi)
whenever e # f. The terms of the quadruple
are called distinct-variable restrictions, variable-
type hypotheses, logical hypotheses, and the as-
sertion respectively. We denote by Ty, (manda-
tory variable-type hypotheses) the subset of T
such that V(Ty) = V(H U {A}). We denote
by Dy = {{a,8} € Dl{a,8} C V(Tu)} the
mandatory distinct-variable restrictions of the
pre-statement. The set of mandatory hypotheses
is TpyUH. We call the quadruple (D, T, H, A)
the reduct of the pre-statement (D, T, H, A).

A statement is the reduct of some pre-statement
A statement is therefore a special kind of pre-
statement; in particular, a statement is the reduct
of itself.

Comment. T is a set of expressions, each
of length 2, that associate a set of constants
(“variable types”) with a set of variables.



The condition V(H U {A}) C V(T') means
that each variable occurring in a statement’s
logical hypotheses or assertion must have an
associated variable-type hypothesis or “type
declaration,” in analogy to a computer pro-
gramming language, where a variable must
be declared to be say, a string or an integer.
The requirement that Ve, f € T'e; # f; for
e # f means that each variable must be as-
sociated with a unique constant designating
its variable type; e.g., a variable might be a
“wff” or a “set” but not both.

Distinct-variable restrictions are used to
specify what variable substitutions are per-
missible to make for the statement to remain
valid. For example, in the theorem scheme
of set theory =V z = y we may not sub-
stitute the same variable for both x and
y. On the other hand, the theorem scheme
r =y — y = z does not require that z
and y be distinct, so we do not require a
distinct-variable restriction, although hav-
ing one would cause no harm other than
making the scheme less general.

A mandatory variable-type hypothesis
is one whose variable exists in a logical hy-
pothesis or the assertion. A provable pre-



statement (defined below) may require non-
mandatory variable-type hypotheses that
effectively introduce “dummy” variables for
use in its proof. Any number of dummy vari-
ables might be required by a specific proof;
indeed, it has been shown by H. Andréka
[43] that there is no finite upper bound to
the number of dummy variables needed to
prove an arbitrary theorem in first-order
logic (with equality) having a fixed num-
ber n > 2 of individual variables. (See also
the Comment on p. [284]) For this reason
we do not set a finite size bound on the
collections D and T, although in an actual
application (Metamath database) these will
of course be finite, increased to whatever
size is necessary as more proofs are added.

Relationship to Metamath. A pre-statement
of a formal system corresponds to an ex-
tended frame in a Metamath database (Sec-
tion[4.2.7). The collections D, T, and H cor-
respond respectively to the $d, $f, and $e
statement collections in an extended frame.
The expression A corresponds to the $a (or
$p) statement in an extended frame.

A statement of a formal system corre-
sponds to a frame in a Metamath database.



C.2.5 Formal Systems

A formal system is a triple (CN, VR,T") where
I' is a set of statements. The members of I" are
called aziomatic statements. Sometimes we will
refer to a formal system by just I' when CN and
VR are understood.

Given a formal system I, the closurd’] of a
pre-statement (D, T, H, A) is the smallest set C'
of expressions such that:

1. TUH C C; and

2. If for some axiomatic statement (D, T}, H'
I and for some substitution o we have

a. o(Ty, UH'") C C; and

b. forall {«, B} € D), forally € V(o ({«)
and for all § € V(o((f))), we have
{y.0} € D;

then o(A") € C.

3This definition of closure incorporates a simplification
due to Josh Purinton.



A pre-statement (D, T, H, A) is provableif A € C
i.e. if its assertion belongs to its closure. A state-
ment is provable if it is the reduct of a provable
pre-statement. The universe of a formal system
is the collection of all of its provable statements.
Note that the set of axiomatic statements I" in a
formal system is a subset of its universe.

Comment. The first condition in the
definition of closure simply says that the
hypotheses of the pre-statement are in its
closure.

Condition 2(a) says that a substitution
exists that makes the mandatory hypotheses
of an axiomatic statement exactly match
some members of the closure. This is what
we explicitly demonstrate in a Metamath
language proof.

Condition 2(b) describes how distinct-
variable restrictions in the axiomatic state-
ment must be met. It means that after
a substitution for two variables that must
be distinct, the resulting two expressions
must either contain no variables, or if they
do, they may not have variables in com-
mon, and each pair of any variables they do



have, with one variable from each expres-
sion, must be specified as distinct in the
original statement.

Relationship to Metamath. Axiomatic
statements and provable statements in a for-
mal system correspond to the frames for $a
and $p statements respectively in a Meta-
math database. The set of axiomatic state-
ments are a subset of the set of provable
statements in a formal system, although in
a Metamath database a $a statement is dis-
tinguished by not having a proof. A Meta-
math language proof for a $p statement tells
the computer how to explicitly construct a
series of members of the closure ultimately
leading to a demonstration that the asser-
tion being proved is in the closure. The
actual closure typically contains an infinite
number of expressions. A formal system
itself does not have an explicit object called
a “proof” but rather the existence of a proof
is implied indirectly by membership of an
assertion in a provable statement’s closure.
We do this to make the formal system easier
to describe in the language of set theory.

We also note that once established as
provable, a statement may be considered



to acquire the same status as an axiomatic
statement, because if the set of axiomatic
statements is extended with a provable state-
ment, the universe of the formal system
remains unchanged (provided that VR is
infinite). In practice, this means we can
build a hierarchy of provable statements to
more efficiently establish additional prov-
able statements. This is what we do in
Metamath when we allow proofs to reference
previous $p statements as well as previous
$a statements.

C.3 Examples of Formal Sys-
tems

Relationship to Metamath. The exam-
ples in this section, except Example 2, are
for the most part exact equivalents of the de-
velopment in the set theory database set .mm.
You may want to compare Examples 1, 3,
and 5 to Section [3.3] Example 4 to Sec-
tions and and Example 6 to
Section [3.4.3]



C.3.1 Example 1—Propositional C
culus

Classical propositional calculus can be described
by the following formal system. We assume the
set of variables is infinite. Rather than denot-
ing the constants and variables by cg, ¢y, ... and
Vg, U1, - - ., for readability we will instead use more
conventional symbols, with the understanding of
course that they denote distinct primitive ob-
jects. Also for readability we may omit commas
between successive terms of a sequence; thus
(wif ¢) denotes (wff, ¢).
Let

CN = {wit,F,—,—,(,)}
VR ={o. ¢, x,...}

T = {(wif @), (wif ), (wff x), ...}, i.e. those
expressions of length 2 whose first member
is wif and whose second member belongs
to VR Then I' consists of the axiomatic

4For convenience we let T be an infinite set; the defi-



statements that are the reducts of following
pre-statements:

(2, T, 2, (wit (¢ — 1))

(9, T, 2, (wif —p))

(D, T,2,(F (¢ = (¥ = ©))))
(2,T,2,(F (g = (¥ —=x)) = ((p =
Y) — (90—>x)))>>

<®>T7@7<}_ ((_'(:0 — _'2/)> — (¢ —
©))))

(D, T, A (0 = V), (F o)}, (F )

(For example, the reduct of (&, T', @, (wff (¢ —
¥)) is

(@, {(wit @), (Wit )}, &, (wif (¢ = ¢))),

nition of a statement permits this in principle. Since a
Metamath source file has a finite size, in practice we must
of course use appropriate finite subsets of this T', specifi-
cally ones containing at least the mandatory variable-type
hypotheses. Similarly, in the source file we introduce new
variables as required, with the understanding that a po-
tentially infinite number of them are available.




which is the first axiomatic statement.)

We call the members of VR wff variables or
(in the context of first-order logic which we will
describe shortly) wff metavariables. Note that
the symbols ¢, 1, etc. denote actual specific mem-
bers of VR; they are not metavariables of our
expository language (which we denote with «,
B, etc.) but are instead (meta)constant sym-
bols (members of SM) from the point of view
of our expository language. The equivalent sys-
tem of propositional calculus described in [61]
also uses the symbols ¢, ¥, etc. to denote wif
metavariables, but in [61] unlike here those are
metavariables of the expository language and not
primitive symbols of the formal system.

The first two statements define wffs: if ¢ and
¥ are wifs, so is (¢ — ©); if ¢ is a wif, so is —p.
The next three are the axioms of propositional
calculus: if ¢ and 1 are wffs, then - (p — (¢ —
©)) is an (axiomatic) theorem; etc. The last is
the rule of modus ponens: if ¢ and ¢ are wifs,
and F (p — ¢) and F ¢ are theorems, then F 1)
is a theorem.



The correspondence to ordinary propositional
calculus is as follows. We consider only prov-
able statements of the form (&, T, @, A) with T
defined as above. The first term of the asser-
tion A of any such statement is either “wft” or
“H7. A statement for which first term is “wft” is
a wff of propositional calculus, and one where
the first term is “F” is a theorem (scheme) of
propositional calculus.

The universe of this formal system also con-
tains many other provable statements. Those
with distinct-variable restrictions are irrelevant
because propositional calculus has no constraints
on substitutions. Those that have logical hy-
potheses we call inferences when the logical hy-
potheses are of the form (F) —~ w where w is a wif
(with the leading constant term “wff” removed).
Inferences (other than the modus ponens rule)
are not a proper part of propositional calculus
but are convenient to use when building a hierar-
chy of provable statements. A provable statement
with a nonsense hypothesis such as (—, -, =), and
this same expression as its assertion, we consider



irrelevant; no use can be made of it in proving
theorems, since there is no way to eliminate the
nonsense hypothesis.

Comment. Our use of parentheses in the
definition of a wif illustrates how axiomatic
statements should be carefully stated in a
way that ties in unambiguously with the
substitutions allowed by the formal system.
There are many ways we could have defined
wifs—for example, Polish prefix notation
would have allowed us to omit parentheses
entirely, at the expense of readability—but
we must define them in a way that is un-
ambiguous. For example, if we had omitted
parentheses from the definition of (¢ — 1),
the wff = — % could be interpreted as
either =(¢ — ¥) or (=p — ) and would
have allowed us to prove nonsense. Note
that there is no concept of operator binding
precedence built into our formal system.



C.3.2 Example 2—Predicate Cal-
culus with Equality

Here we extend Example 1 to include predicate
calculus with equality, illustrating the use of
distinct-variable restrictions. This system is the
same as Tarski’s system S, in [61] (except that
the axioms of propositional calculus are differ-
ent but equivalent, and a redundant axiom is
omitted). We extend CN with the constants
{var,V,=}. We extend VR with an infinite set of
individual metavariables {x,y, z, ...} and denote
this subset V7.

We also join to C'N a possibly infinite set Pr
of predicates {R,S,...}. We associate with Pr
a function rnk from Pr to w, and for a € Pr we
call rnk(«) the rank of the predicate a, which is
simply the number of “arguments” that the predi-
cate has. (Most applications of predicate calculus
will have a finite number of predicates; for exam-
ple, set theory has the single two-argument or
binary predicate €, which is usually written with
its arguments surrounding the predicate symbol



rather than with the prefix notation we will use
for the general case.) As a device to facilitate our
discussion, we will let Vs be any fixed one-to-one
function from w to Vr; thus Vs is any simple in-
finite sequence of individual metavariables with
no repeating terms.

In this example we will not include the func-
tion symbols that are often part of formaliza-
tions of predicate calculus. Using metalogical
arguments that are beyond the scope of our dis-
cussion, it can be shown that our formalization
is equivalent when functions are introduced via
appropriate definitions.

We extend the set T defined in Example 1
with the expressions { (var x), (var y), (var z),...}.
We extend the I'" above with the axiomatic state-
ments that are the reducts of the following pre-
statements:

(2, T, 2, (wif V)
(2, T, 2, (wit x =y))
(@, T{(F 9}, (- Vzp))



2,T,2,(F (Vz(¢ = ¥) = (Vo p = Vo i),

(

(Hz, 03}, T2, (- (¢ = Yz )

(Hz, 9} 1 T 0, (F Va—z =y))

@, T.0,(F(z=2—(r=y—2=y))))
(@, 1,9,(Fly=2— (r=y =z =2))))

These are the axioms not involving predicate
symbols. The first two statements extend the
definition of a wif. The third is the rule of gener-
alization. The fifth states, in effect, “For a wif
¢ and variable z, F (¢ — Vx ¢), provided that
x does not occur in ¢.” The sixth states “For a
variables x and y, - —=Vx—z = y, provided that
x and y are distinct.” (This proviso is not neces-
sary but was included by Tarski to weaken the
axiom and still show that the system is logically
complete.)

Finally, for each predicate symbol a € Pr, we
add to I' the an axiomatic statement, extending
the definition of wif, that is the reduct of the
following pre-statement:

(@,T,2,(wff,a) —~ Vs | rnk(«))



and for each o € Prand each n < rnk(«) we add
to I' an equality axiom that is the reduct of the
following pre-statement:

(@, 1,2,(F(, Vsp, =, Vsrnk = Ga) ~V
~(=,a) ~ Vs|n (Vsmk )>
~ Vs (rmk(a) \ (n+1)) ~ (), )))

where | denotes function domain restriction and
\ denotes set difference. Recall that a subscript
on Vs denotes one of its terms. (In the above
two axiom sets commas are placed between suc-
cessive terms of sequences to prevent ambiguity,
and if you examine them with care you will be
able to distinguish those parentheses that denote
constant symbols from those of our expository
language that delimit function arguments. Al-
though it might have been better to use boldface
for our primitive symbols, unfortunately bold-
face was not available for all characters on the
IXTEX system used to typeset this text.) These
seemingly forbidding axioms can be understood
by analogy to concatenation of substrings in a



computer language. They are actually relatively
simple for each specific case and will become
clearer by looking at the special case of a binary
predicate a = R where rnk(R) = 2. Letting
Vs be the sequence (z,vy, z,...), the axioms we
would add to I'" for this case would be the wif
extension and two equality axioms that are the
reducts of the pre-statements:

(2, T, 2, (wif Rxy))
(2, T,9,(F (r =2 = (Rxy — Rzy))))
(2, T,9,(F (y =2z — (Rry — Rxz2))))

Study these carefully to see how the general ax-
ioms above evaluate to them. In practice, typi-
cally only a few special cases such as this would
be needed, and in any case the Metamath lan-
guage will only permit us to describe a finite
number of predicates, as opposed to the infinite
number permitted by the formal system. (If an
infinite number should be needed for some reason,
we could not define the formal system directly in
the Metamath language but could instead define



it metalogically under set theory as we do in this
appendix, and only the underlying set theory,
with its single binary predicate, would be defined
directly in the Metamath language.)

Comment. As we noted earlier, the
specific variables denoted by the symbols
T,Y,2,... € Vr C VR C SM in Example 2
are not the actual variables of ordinary pred-
icate calculus but should be thought of as
metavariables ranging over them. For ex-
ample, a distinct-variable restriction would
be meaningless for actual variables of ordi-
nary predicate calculus since two different
actual variables are by definition distinct.
And when we talk about an arbitrary rep-
resentative a € Vr, o is a metavariable (in
our expository language) that ranges over
metavariables (which are primitives of our
formal system) each of which ranges over
the actual individual variables of predicate
calculus (which are never mentioned in our
formal system).

The constant called “var” above is called
set in the set.mm database file, but it means
the same thing. I felt that “var” is a more
meaningful name in the context of predicate



calculus, whose use is not limited to set the-
ory. For consistency we stick with the name
“var” throughout this Appendix, even after
set theory is introduced.

C.3.3 Free Variables and Proper
Substitution

In the system of Example 2, there are no prim-
itive notions of free variable and proper substi-
tution. Tarski [61] shows that this system is
logically equivalent to the more typical textbook
systems that do have these primitive notions,
if we introduce these notions with appropriate
definitions and metalogic. We could also define
axioms for such systems directly, although the
recursive definitions of free variable and proper
substitution would be messy and awkward to
work with. Instead, we mention two devices
that can be used in practice to mimic these no-
tions. (1) Instead of introducing special notation
to express (as a logical hypothesis) “where x is
not free in ¢” we can use the logical hypothesis



= (¢ = Vo) [] (2) It can be shown that the wif
((r=y— ) ANJz(z =y A ¢)) (with the usual
definitions of A and 3; see Example 4 below) is
logically equivalent to “the wif that results from
proper substitution of y for x in ¢.” This works
whether or not x and y are distinct.

C.3.4 Metalogical Completeness

In the system of Example 2, the following are
provable pre-statements (and their reducts are
provable statements):

({z,y}}, T, 2, (F ~Vemz = y))
(2, T,9,(F -Ve—x = x))

whereas the following pre-statement is not to
my knowledge provable (but in any case we will

5This is a slightly weaker requirement than “where x is
not free in ¢.” If we let ¢ be x = x, we have the theorem
(z = ¢ — Vzx = x) which satisfies the hypothesis, even
though z is free in x = x . In a case like this we say that
x is effectively not free in x = x, since x = z is logically
equivalent to Vx & = x in which x is bound.



pretend it’s not for sake of illustration) :
(0,1, 2, (F =Va—z =y))

In other words, we can prove “—Vx—x = y where
x and y are distinct” and separately prove “—Vr—x
2”7, but we can’t prove the combined general case
“=Vr—x = y” that has no proviso. Now this does
not compromise logical completeness, because
the variables are really metavariables and the two
provable cases together cover all possible cases.
The third case can be considered a metatheorem
whose direct proof, using the system of Exam-
ple 2, lies outside the capability of the formal
system.

Also, in the system of Example 2 the following
pre-statement is not to my knowledge provable
(again, a conjecture that we will pretend to be
the case):

(2, T,9,(F (Vo — ¢)))

Instead, we can only prove specific cases of ¢
involving individual metavariables, and by induc-
tion on formula length, prove as a metatheorem



outside of our formal system the general state-
ment above. The details of this proof are found
in [25].

There does, however, exist a system of predi-
cate calculus in which all such “simple metatheo-
rems” as those above can be proved directly, and
we present it in Example 3. A simple metathe-
orem is any statement of the formal system of
Example 2 where all distinct variable restrictions
consist of either two individual metavariables or
an individual metavariable and a wif metavari-
able, and which is provable by combining cases
outside the system as above. A system is metalog-
1cally complete if all of its simple metatheorems
are (directly) provable statements. The precise
definition of “simple metatheorem” and the proof
of the “metalogical completeness” of Example 3
is found in Remark 9.6 and Theorem 9.7 of [34].



C.3.5 Example 3—Metalogically C
plete Predicate Calculus witl
Equality

For simplicity we will assume there is one binary

predicate R; this system suffices for set theory,

where the R is of course the € predicate. We
label the axioms as they appear in [34]. This

system is logically equivalent to that of Example 2

(when the latter is restricted to this single binary

predicate) but is also metalogically complete.

Let
CN = {wff,var,F, —, =, (,),V,=, R}.
VR ={p,¥,x,...} U{z,y,2,...}.

T = {(wit @), (wif ), (wif x), ... JU{({var x)

Then I' consists of the reducts of the fol-
lowing pre-statements:

(@, T, a,(wit (¢ = ¢)))
(@, T, 2, (wif —))



(2, T, 2, (wit Vz ¢))
(@, T, 2, (wif x =y))
(wif Rx

(9,7, 2, Y)

(C1) (2, T,2,(F (¢ = (¥ = ¢)))

(C2) (2, T2, (F (¢ > (¥ = x)) = (¢ =
¥) = (e = X))

(C3) (2, T,2,(F (¢ = ) = (¥ =

©))))
(C4) (2,T,2,(F (Vx(Vrp = ) = (Vo p =

Vzy))))
(C5') (2, T,2,{F (Voo = ¢)))
(C6") (2,T,9,(F (VaVy ¢ — YyVx ¢)))
(CT) (2,T,2,(F (—p — Ve=Vx )))
(C8) (0,79, F(r=y— (r=2—>y=

(CY) (2, T,9,(F (~Vex =y — (-Voex =
2= (y=2—=Voy=2)))

(C10") (2,1, 2,(F (Ve(x =y — Yrp) —
©))))



(C13) |
(C1%) (2,T, o,

®

(C16) ({{z,v}}. T,
Yz ©))))

(C5) ({{z, 01}, T, 2, (F (¢ = YV 9)))
(MP) (2, T, {(F (¢ = ), {F )}, (F )
(Gen) (2, T, {{F¢)}, (- Vz )

While it is known that these axioms are “met-
alogically complete,” it is not known whether
they are independent (i.e. none is redundant) in
the metalogical sense; specifically, whether any
axiom (possibly with additional non-mandatory
distinct-variable restrictions, for use with any
dummy variables in its proof) is provable from
the others. Note that metalogical independence
is a stronger requirement than independence in



the usual logical sense. Not all of the above ax-
ioms are logically independent: for example, C9’
can be proved as a metatheorem from the oth-
ers, outside the formal system, by combining the
possible cases of distinct variables.

C.3.6 Example 4—Adding Defini-
tions

There are several ways to add definitions to a
formal system. Probably the most proper way
is to consider definitions not as part of the for-
mal system at all but rather as abbreviations
that are part of the expository metalogic outside
the formal system. For convenience, though, we
may use the formal system itself to incorporate
definitions, adding them as axiomatic extensions
to the system. This could be done by adding a
constant representing the concept “is defined as”
along with axioms for it. But there is a nicer way,
at least in this writer’s opinion, that introduces
definitions as direct extensions to the language



rather than as extralogical primitive notions. We
introduce additional logical connectives and pro-
vide axioms for them. For systems of logic such
as Examples 1 through 3, the additional axioms
must be conservative in the sense that no wff
of the original system that was not a theorem
(when the initial term “wff” is replaced by “+”
of course) becomes a theorem of the extended
system. In this example we extend Example 3
(or 2) with standard abbreviations of logic.

We extend CN of Example 3 with new con-
stants {<>, A, V, 3}, corresponding to logical equiv-
alence, conjunction, disjunction, and the existen-
tial quantifier. We extend I with the axiomatic
statements that are the reducts of the following
pre-statements:

(0,1, 2, (wit (¢ <))

(0,1, 2, (wit (¢ V9)))

(0,1, 2, (wit (¢ A9)))

(@, T, 2, (wff 3z ¢))

(@.7,2,(F ((p <) = (¢ = ¥))))



(@.7,2,(F (¢ ) = (b= 9))))

(@, 1T,9,(F (¢ = ¢) = (¥ = ¢) =
(p < ¥))))

(2,T,2,(F (¢ AY) © =(p = )
(2,T,2,(F (¢ V) < (mp = ¥))
(2, T,2,(F (Fzp < ~Vrop)))

The first three logical axioms (statements contain-
ing “”) introduce and effectively define logical
equivalence, “+”. The last three use “<” to
effectively mean “is defined as.”

C.3.7 Example 5—ZFC Set The-
ory

Here we add to the system of Example 4 the ax-
ioms of Zermelo-Fraenkel set theory with Choice.
For convenience we make use of the definitions
in Example 4.

In the CN of Example 4 (which extends Exam-
ple 3), we replace the symbol R with the symbol
€. We remove from I' of Example 4 the three



axiomatic statements containing R and replace
them with the reducts of the following:

(0,T,a, (wif x € y))
(2, T,0,F(r=y—=(x€z—yE2)))
(0, 7,9, (F(xr=y—(z€x—z€y))))

Letting D = {{«, 8} € DV]a, p € Vr} (in other
words all individual variables must be distinct),
we extend I' with the ZFC axioms, called
Extensionality, Replacement, Union, Power Set,
Regularity, Infinity, and Choice, that are the
reducts of:

Ext (D, T,2,(F Ve(zr €y x € 2) >y =
2)))

Rep (D, T, @, (F Jx(FIyVz(p — 2z =y) = Vz(z €
x < Jz(x €y AVyp))))

Un (D, 7,2, (F JaVy(Jz(y € x ANz € z) —
y € x)))

Pow (D, T,2,(F JaVy(Ve(x € y — = € z) —
y € x)))



Reg (D, T,2,(F (r € y — Fz(x € y AVz(z €
T — 2z €9)))))

Inf (D, T,2,(F Jz(y € tAVy(y € x — Jz(y €
z Nz €x)))))

AC (D, T,2,(F JaVyVz((y € 2Nz € w) —
FJuwVyFw((y € zAzew)AN(yewAw e

z)) <y = w))))

C.3.8 Example 6—Class Notation
in Set Theory

A powerful device that makes set theory easier
(and that we have been using all along in our
informal expository language) is class abstrac-
tion notation. The definitions we introduce are
rigorously justified as conservative by Takeuti
and Zaring [59] or Quine [48]. The key idea is to
introduce the notation {x|—} which means “the
class of all  such that —” for abstraction classes
and introduce (meta)variables that range over
them. An abstraction class may or may not be a
set, depending on whether it exists (as a set). A



class that does not exist is called a proper class.

To illustrate the use of abstraction classes
we will provide some examples of definitions that
make use of them: the empty set, class union, and
unordered pair. Many other such definitions can
be found in the Metamath set theory database,
set.mm.

We extend CN of Example 5 with new sym-
bols {class, {, |, }, @,U,, } where the inner braces
and last comma are constant symbols. (As before,
our dual use of some mathematical symbols for
both our expository language and as primitives of
the formal system should be clear from context.)

We extend VR of Example 5 with a set of class
variables {A, B, C,...}. We extend the T of Ex-
ample 5 with {(class A), (class B), (class C),...}.

To introduce our definitions, we add to I' of
Example 5 the axiomatic statements that are the
reducts of the following pre-statements:

(2, T,, (class x))
(2,T, 2, (class {x|p}))
(o, T, 2, (wif A= B))



(2, T,2,(wit A€ B))
Ab (2. T,2,(F (y € {zlp} < (z =y —
@) A 3z(z =y Ap)))))
Eq ({{z,A},{x,B}},T,9,{F (A= B < Va(r
Az € B))))

El ({{z, A}, {z, B}}.T,,(F (A€ B+ Ju(x -
ANz € B))))

Here we say that an individual variable is a class;
{z|p} is a class; and we extend the definition of
a wif to include class equality and membership.
Axiom Ab defines membership of a variable in a
class abstraction; the right-hand side can be read
as “the wif that results from proper substitution
of y for x in gp.”lﬂ Axioms Eq and El extend the

6Note that this definition makes unnecessary the in-
troduction of a separate notation similar to ¢(z|y) for
proper substitution, although we may choose to do so to
be conventional. Incidentally, p(z|y) as it stands would
be ambiguous in the formal systems of our examples, since
we wouldn’t know whether —¢(x|y) meant —(p(z|y)) or
(=¢)(x|y). Instead, we would have to use an unambiguous
variant such as (p z|y).



meaning of the existing equality and membership
connectives. This is potentially dangerous and
requires careful justification. For example, from
Eq we can derive the Axiom of Extensionality
with predicate logic alone; thus in principle we
should include the Axiom of Extensionality as a
logical hypothesis. However we do not bother to
do this since we have already presupposed that
axiom earlier. The distinct variable restrictions
should be read “where x does not occur in A or
B.” We typically do this when the right-hand
side of a definition involves an individual variable
not in the expression being defined; it is done so
that the right-hand side remains independent of
the particular “dummy” variable we use.

We continue to add to I' the following def-
initions (i.e. the reducts of the following pre-
statements) for empty set, class union, and un-
ordered pair. They should be self-explanatory.
Analogous to our use of “»” to define new wifs
in Example 4, we use “=" to define new abstrac-
tion terms, and both may be read informally as
“is defined as” in this context.



2, T,a, (class &))
o, T, o, (F @ ={x|-z =z}))
2, T, 2, (class (AU B)))

{{z, A}, {z,B}},T, &, (F (AUB) = {z|(x €
AVzx e B)}))

(2,T, 2, (class {A, B}))

{{z, A {e, BY), T, @, (- {A, B} = {z|(x -
AVz=B)})

(
(
(
(

C.4 DMetamath as a Formal
System

This section presupposes a familiarity with the
Metamath computer language.

Our theory describes formal systems and their
universes. The Metamath language provides a
way of representing these set-theoretical objects
to a computer. A Metamath database, being
a finite set of ASCII characters, can usually de-
scribe only a subset of a formal system and its



universe, which are typically infinite. However
the database can contain as large a finite sub-
set of the formal system and its universe as we
wish. (Of course a Metamath set theory database
can, in principle, indirectly describe an entire infi-
nite formal system by formalizing the expository
language in this Appendix.)

For purpose of our discussion, we assume the
Metamath database is in the simple form de-
scribed on p. [302] consisting of all constant and
variable declarations at the beginning, followed
by a sequence of extended frames each delimited
by ${ and $}. Any Metamath database can be
converted to this form, as described on p. [309]

The math symbol tokens of a Metamath source
file, which are declared with $c and $v state-
ments, are names we assign to representatives of
CN and VR. For definiteness we could assume
that the first math symbol declared as a vari-
able corresponds to vy, the second to vy, etc.,
although the exact correspondence we choose is
not important.

In the Metamath language, each $d, $f, and



$e source statement in an extended frame (Sec-
tion [4.2.7) corresponds respectively to a member
of the collections D, T', and H in a formal sys-
tem statement (Dys, Ty, H, A). The math sym-
bol strings following these Metamath keywords
correspond to a variable pair (in the case of $d)
or an expression (for the other two keywords).
The math symbol string following a $a source
statement corresponds to expression A in an ax-
iomatic statement of the formal system; the one
following a $p source statement corresponds to
A in a provable statement that is not axiomatic.
In other words, each extended frame in a Meta-
math database corresponds to a pre-statement
of the formal system, and a frame corresponds
to a statement of the formal system. (Don’t con-
fuse the two meanings of “statement” here. A
statement of the formal system corresponds to
the several statements in a Metamath database
that may constitute a frame.)

In order for the computer to verify that a for-
mal system statement is provable, each $p source
statement is accompanied by a proof. However,



the proof does not correspond to anything in the
formal system but is simply a way of communi-
cating to the computer the information needed
for its verification. The proof tells the computer
how to construct specific members of closure of
the formal system pre-statement corresponding
to the extended frame of the $p statement. The
final result of the construction is the member of
the closure that matches the $p statement. The
abstract formal system, on the other hand, is
concerned only with the existence of members of
the closure.

As mentioned on p. Examples 1 and 3-6
in the previous Section parallel the development
of logic and set theory in the Metamath database
set.mm. You may find it instructive to compare
them.






Appendix D
The MIU System

The following is a listing of the file miu.mm. It is
self-explanatory.

$( The MIU-system: A simple formal
system $)

$( Note: This formal system is
unusual in that it allows

empty wffs. To work with a proof,
you must type

SET EMPTY_SUBSTITUTION ON before
using the PROVE command.



By default, this is OFF in order to
reduce the number of

ambiguous unification possibilities
that have to be selected

during the construction of a proof.

$)

$(

Hofstadter’s MIU-system is a simple
example of a formal

system that illustrates some concepts
of Metamath. See

Douglas R. Hofstadter, _Goedel,
Escher , Bach: An Eternal

Golden Braid_ (Vintage Books, New
York, 1979), pp. 33ff. for

a description of the MIU-system.

The system has 3 constant symbols, M,
I, and U. The sole
axiom of the system is MI. There are
4 rules:
Rule I: If you possess a string
whose last letter is I,
you can add on a U at the end.
Rule II: Suppose you have Mx.
Then you may add Mxx to



your collection.
Rule III: TIf III occurs in one
of the strings in your
collection, you may make a new
string with U in place
of III.
Rule IV: If UU occurs inside
one of your strings, you
can drop it.
Unfortunately, Rules III and IV do
not have unique results:
strings could have more than one
occurrence of III or UU.
This requires that we introduce the
concept of an "MIU
well-formed formula" or wff, which
allows us to construct
unique symbol sequences to which
Rules III and IV can be
applied.
$)

$( First, we declare the constant
symbols of the language.

Note that we need two symbols to
distinguish the assertion



that a sequence is a wff from the
assertion that it is a
theorem; we have arbitrarily chosen
"wff" and ul_n‘ $)
$c M I U |- wff $. $( Declare
constants $)

$( Next, we declare some variables. $)
$v x vy $.

$( Throughout our theory, we shall
assume that these
variables represent wffs. $)
WX $f wff x $.
wy $f wiff y $.

$( Define MIU-wffs. We allow the
empty sequence to be a
wff. $)

$( The empty sequence is a wff. §)
we $a wff §$.

$( "M" after any wff is a wff. §)
wM $a wff x M $.

$( "I" after any wff is a wff. §)
wl $a wff x I $.

$( "U" after any wff is a wff. §)



wU $a wff x U $.

$( Assert the axiom. $)
ax $a |- M I $.

$( Assert the rules. $)
${
Ia $e¢ |- x I $.
$( Given any theorem ending with "I",
it remains a theorem
if "U" is added after it. (We
distinguish the label I_
from the math symbol I to conform to
the 24-Jun-2006
Metamath spec.) $)
I_ $a |- x I U $.
$}
${
ITa $e |- M x $.
$( Given any theorem starting with
"M", it remains a theorem
if the part after the "M" is added
again after it. $)
II $a |- M x x $.
$3
${
IITa $e |- x I I Iy $.



$( Given any theorem with "III" in
the middle, it remains a
theorem if the "III" is replaced with

IIUII. $)

ITI $a |- x Uy $.
$3
${

IVa $e |- x U Uy $.

$( Given any theorem with "UU" in the
middle, it remains a
theorem if the "UU" is deleted. $)
IV $a - x y $.
$3

$( Now we prove the theorem MUIIU.
You may be interested in
comparing this proof with that of
Hofstadter (pp. 35 - 36).
$)
theoreml $p |- MU I I U $=
we wM wU wlI we wI wU we wU wl
wU we wM we wI wU we wM
wl wI wlI we wlI wI we wlI ax II
IT I_ III II IV $.

The show proof /essential/lemmon/renumt
command yields the following display. It is very



similar to the one in [24, pp. 35-36].

1 ax $a |- M I

2 1 II $a |- M I I

3 2 1II $a |- M I I II

4 3 I_ $a |- M I I I I U
5 4 III $a |- MU I U

6 5 II $a |- MU I UUTIU
7 6 IV $a |- MUIIU

We note that Hofstadter’s “MU-puzzle,” which
asks whether MU is a theorem of the MIU-system,
cannot be answered using the system above be-
cause the MU-puzzle is a question about the sys-
tem. To prove the answer to the MU-puzzle, a
much more elaborate system is needed, namely
one that models the MIU-system within set the-
ory. (Incidentally, the answer to the MU-puzzle
is no.)
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