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1 Introduction

Metamath1 is a formal proof verifier designed and implemented by Norman Megill. He has also
formalized many mathematical proofs in this system. As part of this project, he devised a collection
of axioms for complex numbers. As with any set of axioms, we may ask whether or not any of the
axioms are redundant, that is, derivable from the other axioms. Additionally, we may investigate
whether replacing an axiom with an apparently weaker assertion results in a system of the same
strength. In general, given some axiom system, we would like, by a process of removing and weak-
ening axioms, to arrive at a system in which there are (provably) no redundancies and (apparently)
no notable weakenings.

Some simplifications of Megill’s original system were known before this paper. We describe
further simplifications, and make significant progress towards proving that the resulting system
contains no redundancies. We also present some related results of interest.

2 Axioms

2.1 Axiom system C1
We will describe Megill’s original system as a collection of 26 first-order axioms and one second-order
axiom. The system contains unary predicates for “is a complex number” and “is a real number”,
denoted, respectively, as ∈ C and ∈ R. It also contains binary operations + and ·, a binary
relation <, and constants 0, 1, and i. We strive to use typical notation. For instance, we denote ·
as simply juxtaposition and consider · to have higher precedence than +. We also use set-theoretic
notation, particularly to describe axiom (sup) below. The statement (sup) could, of course, be
written purely in the language of second-order logic.

We define C1 to be the set of the following first-order statements:

(resscn) ∀x ∈ R x ∈ C
(0re) 0 ∈ R
(1re) 1 ∈ R
(icn) i ∈ C
(addcl) ∀z, w ∈ C z + w ∈ C
(addrcl) ∀x, y ∈ R x+ y ∈ R
(mulcl) ∀z, w ∈ C zw ∈ C
(mulrcl) ∀x, y ∈ R xy ∈ R
(addcom) ∀z, w ∈ C z + w = w + z
(mulcom) ∀z, w ∈ C zw = wz
(addass) ∀z, w, u ∈ C (z + w) + u = z + (w + u)

1http://metamath.org
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(mulass) ∀z, w, u ∈ C (zw)u = z(wu)
(distr) ∀z, w, u ∈ C z(w + u) = zw + zu
(1ne0) 1 6= 0
(0id) ∀z ∈ C z + 0 = z
(1id) ∀z ∈ C z1 = z
(negex) ∀z ∈ C ∃w ∈ C z + w = 0
(recex) ∀z ∈ C (z 6= 0→ ∃w ∈ C zw = 1)
(rnegex) ∀x ∈ R ∃y ∈ R x+ y = 0
(rrecex) ∀x ∈ R (x 6= 0→ ∃y ∈ R xy = 1)
(i2m1) ii+ 1 = 0
(cnre) ∀z ∈ C ∃x, y ∈ R z = x+ yi
(lttri) ∀x, y ∈ R (x < y ↔ ¬(x = y ∨ y < x))
(lttrn) ∀x, y, z ∈ R ((x < y ∧ y < z)→ x < z)
(ltadd) ∀x, y, z ∈ R (x < y → z + x < z + y)
(mulgt0) ∀x, y ∈ R ((0 < x ∧ 0 < y)→ 0 < xy),

and the following second-order statement:

(sup) ∀S ⊆ R ((S 6= ∅ ∧ ∃x ∈ R ∀y ∈ S y < x)
→ ∃x ∈ R (∀y ∈ S (¬x < y) ∧ ∀y ∈ R (y < x→ ∃z ∈ S y < z))).

Notes:

1. Megill’s system, as he describes it, contains an axiom equivalent to the assertion that C is a set,
rather than a proper class. We have omitted it since this cannot be stated in our formulation
as a second-order theory. There are other, minor differences between our presentation and
Megill’s; these need not detain us.

2. Megill observes that (i2m1) could be used to eliminate 0 as a primitive constant, at the expense
of complicating the statements of the other axioms.

3. We could assume that the universe is the set of complex numbers, which would make super-
fluous a number of the axioms. We have not done this since we wish to investigate whether
these axioms are redundant.

2.2 Candidates for weaker axioms

Part of our aim is to investigate whether various axioms can be replaced with weaker axioms. We
must, however, ask the question: what makes an axiom “weaker”? Consider, say, the axiom (1re). If
we were able to replace this axiom with the assertion 1 ∈ C (which, we will soon show, we can), we
would be inclined to regard this as a weakening of (1re). However, since, as a whole, the resulting
system is just as strong, in what sense has anything been “weakened”? We cannot resolve this by
considering (1re) in isolation, since 1 ∈ R → 1 ∈ C is not a logical truth. It is only together with
the axiom (resscn) that it becomes coherent to regard 1 ∈ R as a stronger assertion than 1 ∈ C.

Additionally, some weakenings may actually be considered undesirable. For instance, we could
weaken (addass) by restricting u to be nonzero, since the case where u = 0 can be easily recovered
from the other axioms. However, this would complicate the statement of the axiom.

We will not attempt to provide a solution to these matters. Instead, we will simply consider
a restricted class of weakenings. These are of two types: replacing universal quantification over C
with universal quantification over R, and replacing membership in R with membership in C. In
particular, we will discuss the following statements as potential weakenings of axioms of C1:
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(1cn) 1 ∈ C
(addrass) ∀x, y, z ∈ R (x+ y) + z = x+ (y + z)
(mulrass) ∀x, y, z ∈ R (xy)z = x(yz)
(rdistr) ∀x, y, z ∈ R x(y + z) = zy + xz
(r1id) ∀x ∈ R x1 = x.

3 Reductions

In this section, we discuss various reductions of C1, that is, ways of either removing axioms or
weakening them.

3.1 The reduction to C2
We first discuss the reductions found and published on the Metamath website prior to this paper.
Define C2 to be C1 − (0re)− (negex)− (recex)− (1re) + (1cn). We will show the equivalence of this
system with C1.

The first reduction was found by Megill in 2005.

Lemma 3.1 (Megill). The statement (0re) is derivable from C1 − (0re).

Proof. By (1re) and (rnegex), there exists x ∈ R such that 1+x = 0. Then, by (addrcl), we conclude
0 ∈ R.

In 2007, the author discovered the following.

Lemma 3.2. C2 ` C1.

Proof. Deduction of (0re): By either (icn) or (1cn), C is nonempty. Thus, by (cnre), R is also
nonempty. Take x ∈ R. By (rnegex), there exists y ∈ R such that x+ y = 0. Then, using (addrcl),
we deduce (0re). At this point, we know that R is an ordered field.

Deduction of (negex): By (cnre), any complex number may be expressed as a + bi for some
a, b ∈ R. Again, from (cnre) we know that 0 = x + yi for some x, y ∈ R. Then, yi = −x ∈ R.
Therefore, there exists c ∈ R such that b + c = yi. Then, a + bi + ci = a + yi ∈ R, so it has an
additive inverse d ∈ R. Thus, ci+ d is the desired additive inverse of a+ bi. At this point, we know
that C is a commutative ring.

Deduction of (1re): Using (1cn) and (cnre), we know that 1 = x+ yi for some x, y ∈ R. Because
C is a ring, 0i = 0. Thus, if we had x = y = 0, we would have 1 = 0, which contradicts (1ne0).
Thus, there exists a nonzero real number. So, applying (rrecex) and (rmulcl), we deduce (1re).

Deduction of (recex): Take an arbitrary nonzero complex number a + bi, with a, b ∈ R. Since
a+ bi 6= 0, either a 6= 0 or b 6= 0. Since R is an ordered field, a2 + b2 > 0. Then, (a− bi)(a2 + b2)−1

is a multiplicative inverse to a+ bi.

3.2 Some useful lemmas

Here we prove some lemmas that we will have need of later. First we have a basic fact noted by
Dummit and Foote.2

Lemma 3.3. Suppose R is a set with a group operation + and a monoid operation · (with identity
element 1), such that · distributes over +. Then, + is commutative. Thus, R is a ring.

2Dummit, David Steven, and Richard M. Foote. Abstract Algebra. 3rd ed. John Wiley & Sons Inc, 2004., p. 223.
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Proof. By distributing the left term, we have (a+b) ·(1+1) = a+b+a+b. By distributing the right
term instead, we obtain (a+ b) · (1 + 1) = a+a+ b+ b. By cancelling, we find that a+ b = b+a.

The following result and its proof are based on formal derivations found on the Metamath
website.3

Lemma 3.4. Let G be a set with a binary operation denoted by juxtaposition. Suppose that the
binary operation is associative and that there exists e ∈ G such that ge = g for all g ∈ G. Suppose
also that for all g ∈ G, there exists h ∈ G such that gh = e. Then G is a group.

Proof. Suppose g ∈ G. Then, by assumption, there exists h ∈ G with gh = e. We claim that also
hg = e. To prove this, note that there exists k ∈ G such that hgk = e. Then, hg = hge = hghgk =
hegk = hgk = e. Moreover, e is a left identity element since eg = ghg = ge = g. Thus, G is a
group.

Last, we present two more lemmas that we need.

Lemma 3.5. It follows from (addrcl), (lttri), and (ltadd) that for all x, y, z ∈ R, if z + x = z + y,
then x = y.

Proof. If x 6= y, then by (lttri), either x < y or y < x. If x < y, then (ltadd) gives z + x < z + y, so
z + x 6= z + y. We obtain the same conclusion if y < x.

Lemma 3.6. It follows from C1 − (sup) that every member of C has a unique representation in the
form a+ bi with a, b ∈ R.

Proof. By (cnre), such representations exist, so we need only show uniqueness. By (i2m1), we have
i2 = −1 < 0, so i /∈ R. Next, suppose that a + bi = 0 with a, b ∈ R. Then b = 0, for otherwise we
would have i = −a/b. It then follows that a = 0. Thus, 0 + 0i is the unique representation of 0.
To prove the result, take complex numbers a1 + b1i, a2 + b2i, and apply the previous observation to
(a1 − a2) + (b1 − b2)i.

3.3 The reduction to C3
We now show how C2 may be reduced even further. Let C3 = C2− (addcom)− (0id)− (1id) + (r1id).

Lemma 3.7. C3 ` C1.

Proof. Deduction of (0re): As in Lemma 3.2.
Deduction of (1re): Using (1ne0), we see that there exist at least two complex numbers, so by

(cnre), there exist at least two real numbers. Thus there exists a nonzero real number, so by (rrecex)
and (mulrcl), we deduce (1re).

Deduction of (1id): For any a+ bi ∈ C, we have (a+ bi)1 = a1 + (b1)i = a+ bi.
Deduction of (0id): First we claim that 0 = 0+0. To prove this, note that by (rnegex), there exists

c ∈ R with 0+c = 0. If 0 6= 0+0, then c 6= 0. For any x ∈ R, we have 0x+0 = (0+c)x+0 = 0x+cx+0.
By Lemma 3.5, 0 = cx+ 0. Then, take x = c−10 to obtain 0 = 0 + 0, a contradiction.

Next, we claim that 0x = 0 for all x ∈ R. For suppose we had x ∈ R with 0x 6= 0. Then, for
any z ∈ C, multiplying the equation 0 = 0 + 0 by (0x)−1xz yields z = z + z. Suppose y ∈ R and
w ∈ C. Write w = a + bi, with a, b ∈ R. Then, y + a = y + y + a, so by Lemma 3.5, a = y + a.

3See http://us.metamath.org/mpegif/grpidinvlem1.html and ff. (where “left” and “right” are reversed from our
formulation).
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Adding bi on the right, we obtain w = y+w, for all real y and complex w. In particular, by (cnre),
every complex number has the form bi for some b ∈ R. Since there are at least two reals, there are
at least two choices of b ∈ R such that bi ∈ R. Hence, we can choose such a b so that b 6= 0. Then,
i = b−1bi ∈ R. So, from i2 + 1 = 0, we obtain 1 = 0, a contradiction.

Further, we claim that 0z = 0 for all z ∈ C. To prove this, by writing z = a+ bi with a, b ∈ R,
we see that 0z = 0 + 0i, for all z ∈ C. When z is real, we know also that 0z = 0. Thus 0 + 0i = 0
and 0z = 0 for all z ∈ C.

Now we complete the proof of (0id). There exists c ∈ R with 1+ c = 0. Then, 1 + c+ 0 = 0 +0 =
0 = 1 + c, and applying Lemma 3.5, we obtain c + 0 = c. If c 6= 0, then, for any z ∈ C, we may
multiply by c−1z to obtain z + 0 = z, and we are done. So, suppose that c = 0. Then, 1 + 0 = 0.
Multiplying by z, we find that z + 0 = 0 for all z ∈ C. From (i2m1), we have i2 + 1 = 0, so by
adding i4 on the left, we obtain i4 + i2 + 1 = 0. Then,

0 + 0 = 0 = i4 + i2 + 1 = i2(i2 + 1) + 1 = 0 + 1,

and applying Lemma 3.5, we obtain 0 = 1, a contradiction.
Deduction of (addcom): By Lemma 3.4, we find that R is a group under addition. Then, we

may prove (negex) as in Lemma 3.2. By applying Lemma 3.4 again, C is a group under addition.
By Lemma 3.3, we deduce (addcom).

Now we know that C3 ` C2, so by Lemma 3.2, we are done.

3.4 Other reductions from C1
Here we present various reductions from C1. These arguments do not allow us to simplify C3 even
further, since they use axioms not contained in that system. Combined with some of the indepen-
dence results of Section 4, this shows that there are multiple, mutually exclusive ways to simplify
C1.

Lemma 3.8. (mulrcl) is derivable from C1 − (mulrcl).

Proof. If 0 < 1, then by adding 1 to both sides, we obtain 1 < 2. Similarly if 1 < 0, then 2 < 1. Thus,
2 6= 0. We claim that if x ∈ R, then x/2 ∈ R. This is immediate if x = 0, and for x 6= 0, this follows
from the identity x/2 = (x−1 + x−1)−1. We claim next that if x ∈ R, then x2 ∈ R. This is obvious
if x = 0 or x = 1, and in other cases this follows from the identity x−1 + (1 − x)−1 = (x − x2)−1.
Finally, for any x, y ∈ R, the identity xy = ((x+ y)2 − x2 − y2)/2 shows that xy ∈ R.

Lemma 3.9. The system C1 − (negex)− (rnegex) is logically equivalent to C1.

Proof. Deduction of (negex): First, for any x ∈ R, we have 0x = (0 + 0)x = 0x + 0x, and so by
Lemma 3.5, we have 0x = 0. Now, using (cnre), write a + bi = 0 for some a, b ∈ R. Multiplying
this equation by 0, we obtain 0i = 0. From this we see that 0z = 0 for all z ∈ C. Thus, we have
z + zi2 = z(1 + i2) = z0 = 0, so (negex) follows.

Deduction of (rnegex): As −a = (−1)a for any a, it suffices to show that −1 ∈ R. If i ∈ R, this
is immediate, so suppose that i /∈ R. Write a+ bi = −1 for some a, b ∈ R. Then, bi = (1 + a)i2. So,
by cancelling, b = (1 + a)i. This implies that a = −1, for otherwise we would have i = b/(1 + a),
contradicting the assumption that i /∈ R. Since a ∈ R by hypothesis, we are done.

Lemma 3.10. The system C1 − (0id)− (rnegex) is logically equivalent to C1.
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Proof. By the previous lemma, it suffices to derive (0id). By (negex), there exists u ∈ C such that
0 + u = 0. Then, for any z ∈ C, 0 + u+ z = 0 + z, and using Lemma 3.5 and (cnre), we may cancel
to get u+ z = z. So we need only show that u = 0. To do this, suppose that u 6= 0. Then, we may
multiply the equation u + u = u by u−10, to obtain 0 + 0 = 0 = 0 + u. We then cancel to obtain
0 = u, a contradiction.

Lemma 3.11. (rrecex) is derivable from C1 − (rrecex).

Proof. Let A be a model of C1 − (rrecex) − (sup). We use the symbols RA and <A to denote,
respectively, the real numbers and the ordering relation in A. We use unadorned symbols C, etc., to
denote the other components of A. Now, we know that RA is an ordered ring, and we want to know
that is is an ordered field. Using (mulgt0), we see that RA is an integral domain. Let RB denote
the fraction field of RA in C. Suppose we have fractions a/b, c/d ∈ RB , where a, b, c, d ∈ RA and
b, d > 0. Write a/b <B c/d iff ad <A cb. This makes RB into an ordered field. Form a structure B
from A by replacing RA with RB and <A with <B . Since (cnre) is true in A, it is immediate that
is it also true in B. Thus, B is a model of C1 − (sup).

Now, by applying Lemma 3.6 to B, we find that any z ∈ C has a unique representation in the
form a + bi with a, b ∈ RB . We will be done if we show that RA = RB . Plainly, RA ⊆ RB . For
the other inclusion, suppose that x ∈ RB . Then x + 0i is the unique representation of x. But, by
applying (cnre) to A, we find that x = a+ bi for some a, b ∈ RA. It follows that x = a, so x ∈ RA.
Hence RB ⊆ RA. This completes the proof.

4 Independence proofs

In this section we present proofs of the independence of various axioms. In each case, in order to
prove that a sentence P cannot be derived from a collection A of axioms, we exhibit a structure
(U ; CM,RM, 0M, 1M, iM,+M, ·M, <M), where U is the universe, that satisfies A but not P . In what
follows, if the universe is a ring, the symbols +, ·, etc., refer to the addition, multiplication, etc., of
the universe.

4.1 Axioms independent in C1
We have shown that a number of the axioms of C1 are redundant in that system. We now show that
most of the rest are not redundant.

Lemma 4.1. (resscn) cannot be derived from C1 − (resscn).

Proof. Use (Q(i); Q(i),R, 0, 1, i,+, ·, <).

Lemma 4.2. (1cn) cannot be derived from C1 − (1re).

Proof. Let x and y be distinct objects. Let +M = ·M be the binary operation on {x, y} with constant
value x. Use ({x, y}; {x}, {x}, x, y, x,+M, ·M,∅).

Lemma 4.3. (icn) cannot be derived from C1 − (icn).

Proof. Use (C; R,R, 0, 1, i,+, ·, <).

Lemma 4.4. (addcl) cannot be derived from C1 − (addcl).
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Proof. Use (C; R ∪ Ri,R, 0, 1, i,+, ·, <).

Lemma 4.5. (addrcl) cannot be derived from C1 − (addrcl).

Proof. Let <M be the smallest transitive relation on F5 such that

−2 <M 1 <M 0 <M 1 <M 2.

Use (F5; F5, {−1, 0, 1}, 0, 1, 2,+, ·, <M).

Lemma 4.6. (addass) cannot be derived from C1 − (addass) + (addrass).

Proof. For any z, w ∈ C, define

z +M w =

{
0 if w 6= 0 and z/w ∈ {1 + i, (1 + i)−1},
z + w otherwise.

Use (C; C,R, 0, 1, i,+M, ·, <).

Lemma 4.7. (mulass) cannot be derived from C1 − (mulass) + (mulrass).

Proof. Let Br be a basis for R as a Q-vector space, chosen so that 1 ∈ Br. Extend Br to a basis B
for C as a Q-vector space, chosen so that i ∈ B. For each integer n ≥ 0, we will define a partial
map φn on B × B. After this, we will define multiplication of elements of B in such a way so that
α ·M β = φn(α, β) whenever (a, b) is in the domain of φn. Finally, we will extend the definition of
multiplication to all complex numbers by requiring that it be bilinear.

We define φ0 as follows. For any α, β ∈ Br, let φ0(α, β) = αβ. Additionally, for any α ∈ B,
let φ0(α, 1) = φ0(1, α) = α, and, for α ∈ Br ∪ {i}, let φ0(α, i) = φ0(i, α) = αi. The effect of these
definitions will be to ensure that x ·M y = xy for x, y ∈ R, that z ·M 1 = z for z ∈ C, and that
z ·M i = zi for z ∈ R ∪ {i}.

Next, we will define φn for each n ≥ 1 in such a way as to ensure that each nonzero complex
number has a multiplicative inverse. Let {Bn}n≥1 be a partition of B such that all the Bn, for n ≥ 1,
have the same (infinite) cardinality. (This will be the cardinality of the continuum, but we do not
need that fact for this proof.) Also, choose this partition so that Br ∪ {i} ⊆ B1. For each n ≥ 1, let
An =

⋃n
i=1 Bi, and choose bijections fn : spanQ(An) −→ Bn+1.

Fix n, and consider some z ∈ spanQ(An) such that z /∈ R. Write z = q+p1α1 + · · ·+pmαm with
p1, . . . , pm ∈ Q \ {0}, q ∈ Q, and α1, . . . , αm ∈ An \ {1}. Let

φn(α1, fn(z)) = φn(fn(z), α1) =
1− qfn(z)

p1
.

For 2 ≤ i ≤ m, let φn(αi, fn(z)) = φn(fn(z), αi) = 0. Thus, we will ensure that z ·M fn(z) = 1 for all
nonreal z ∈ spanQ(An). Since every z is in spanQ(An) for some n, we have guaranteed the existence
of multiplicative inverses.

Now we define ·M : C × C −→ C as follows. For α, β ∈ B, if there is some (necessarily unique)
n for which (α, β) is in the domain of φn, let α ·M β = φn(α, β). Otherwise, let α ·M β = 0. Extend
·M to C×C by requiring that it be Q-bilinear. Now, ·M is not associative, for if it were associative,
(C,+, ·M) would be a field. Since there exist basis elements whose product is 0 (for instance, any
two elements of Bn for n > 1), this is impossible.

To prove the lemma, use (C; C,R, 0, 1, i,+, ·M, <).

Lemma 4.8. (distr) cannot be derived from C1 − (distr) + (rdistr).
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Proof. For any z ∈ C, define

φ(z) =


2 + i if z = 1 + i,

1 + i if z = 2 + i,

z otherwise,

and for any z, w ∈ C, define
z ·M w = φ−1(φ(z)φ(w)).

Use (C; C,R, 0, 1, i,+, ·M, <).

Lemma 4.9. (1ne0) cannot be derived from C1 − (1ne0).

Proof. Let U be the ring with one element. Use (U ;U,U, 0, 0, 0,+, ·,∅).

Lemma 4.10. (1id) cannot be derived from C1 − (1id).

Proof. Use (C; C,R, 0, 2, i
√

2,+, ·, <).

Lemma 4.11. (i2m1) cannot be derived from C1 − (i2m1).

Proof. Use (C; C,R, 0, 1, 2i,+, ·, <).

Lemma 4.12. (cnre) cannot be derived from C1 − (cnre).

Proof. Use (C(x); C(x),R, 0, 1, i,+, ·, <).

Lemma 4.13. (lttri) cannot be derived from C1 − (lttri).

Proof. Use (C; C,R, 0, 1, i,+, ·,∅).

Lemma 4.14. (lttrn) cannot be derived from C1 − (lttrn).

Proof. For any a, b ∈ F3, write a <M b iff b− a = 1. Let iM denote a square root of −1 in F9. Use
(F9; F9,F3, 0, 1, iM,+, ·, <M).

Lemma 4.15. (ltadd) cannot be derived from C1 − (ltadd).

Proof. For any x ∈ R, define

φ(x) =

{
1− x if 0 < x < 1,
x otherwise.

For x, y ∈ R, write x <M y iff φ(x) < φ(y). Use (C; C,R, 0, 1, i,+, ·, <M).

Lemma 4.16. (mulgt0) cannot be derived from C1 − (mulgt0).

Proof. Use (C; C,R, 0, 1, i,+, ·, >).

Lemma 4.17. (sup) cannot be derived from C1 − (sup).

Proof. Use (Q(i); Q(i),Q, 0, 1, i,+, ·, <).
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4.2 Other sets of independent axioms

We now provide examples of sets of axioms that cannot be simultaneously removed from C1 even
though the individual axioms are redundant (or their status is unknown).

Lemma 4.18. Neither (mulcl) nor (recex) can be derived from C1 − (mulcl)− (recex).

Proof. Use (C; R + Zi,R, 0, 1, i,+, ·, <).

Lemma 4.19. Neither (mulrcl) nor (1re) can be derived from C1 − (mulrcl)− (1re) + (1cn).

Proof. For z, w ∈ C, write z <M w iff [(z, w ∈ Ri and z/i < w/i) or (z = 0, w ∈ R, and w < 0)].
Use (C; C,Ri, 0, 1, i,+, ·, <M).

Lemma 4.20. Neither (recex) nor (rrecex) can be derived from C1 − (recex)− (rrecex).

Proof. Use (Z[i]; Z[i],Z, 0, 1, i,+, ·, <).

Lemma 4.21. Neither (0id), (negex), nor (rnegex) can be derived from C1 − (0id) − (negex) −
(rnegex).

Proof. Let CM = RM denote the set of positive real numbers. Use (R; CM,RM, 2, 1, 1,+, ·, <).

5 Conclusion

The results of Sections 3 and 4 prove the following.

Theorem. System C3 is logically equivalent to C1. Moreover, every axiom of C3, with the possible
exception of (mulcom), is independent of the others.

There remain a number of open questions. Most interesting would be to determine whether
(mulcom) is redundant in C3. Additionally, it is not known whether (mulcl) or (mulcom) are redun-
dant in C1.
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