ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2 Unicode version

Theorem bi2 129
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
Assertion
Ref Expression
bi2  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )

Proof of Theorem bi2
StepHypRef Expression
1 df-bi 116 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpli 110 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
32simprd 113 1  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bicom1  130  pm5.74  178  bi3ant  223  pm5.32d  443  notbi  638  nbn2  669  pm4.72  795  con4biddc  825  con1biimdc  841  bijadc  850  pclem6  1335  exbir  1395  simplbi2comg  1402  albi  1427  exbi  1566  equsexd  1690  cbv2h  1707  sbiedh  1743  ceqsalt  2683  spcegft  2736  elab3gf  2803  euind  2840  reu6  2842  reuind  2858  sbciegft  2907  iota4  5064  fv3  5398  algcvgblem  11576  bj-inf2vnlem1  12860
  Copyright terms: Public domain W3C validator