ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsb3 Unicode version

Theorem elsb3 2132
Description: Substitution applied to an atomic membership wff. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
elsb3  |-  ( [ y  /  x ]
x  e.  z  <->  y  e.  z )
Distinct variable group:    x, z

Proof of Theorem elsb3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-17 1503 . . . . 5  |-  ( x  e.  z  ->  A. w  x  e.  z )
2 elequ1 2129 . . . . 5  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
31, 2sbieh 1767 . . . 4  |-  ( [ x  /  w ]
w  e.  z  <->  x  e.  z )
43sbbii 1742 . . 3  |-  ( [ y  /  x ] [ x  /  w ] w  e.  z  <->  [ y  /  x ]
x  e.  z )
5 ax-17 1503 . . . 4  |-  ( w  e.  z  ->  A. x  w  e.  z )
65sbco2h 1941 . . 3  |-  ( [ y  /  x ] [ x  /  w ] w  e.  z  <->  [ y  /  w ]
w  e.  z )
74, 6bitr3i 185 . 2  |-  ( [ y  /  x ]
x  e.  z  <->  [ y  /  w ] w  e.  z )
8 equsb1 1762 . . . 4  |-  [ y  /  w ] w  =  y
9 elequ1 2129 . . . . 5  |-  ( w  =  y  ->  (
w  e.  z  <->  y  e.  z ) )
109sbimi 1741 . . . 4  |-  ( [ y  /  w ]
w  =  y  ->  [ y  /  w ] ( w  e.  z  <->  y  e.  z ) )
118, 10ax-mp 5 . . 3  |-  [ y  /  w ] ( w  e.  z  <->  y  e.  z )
12 sbbi 1936 . . 3  |-  ( [ y  /  w ]
( w  e.  z  <-> 
y  e.  z )  <-> 
( [ y  /  w ] w  e.  z  <->  [ y  /  w ] y  e.  z ) )
1311, 12mpbi 144 . 2  |-  ( [ y  /  w ]
w  e.  z  <->  [ y  /  w ] y  e.  z )
14 ax-17 1503 . . 3  |-  ( y  e.  z  ->  A. w  y  e.  z )
1514sbh 1753 . 2  |-  ( [ y  /  w ]
y  e.  z  <->  y  e.  z )
167, 13, 153bitri 205 1  |-  ( [ y  /  x ]
x  e.  z  <->  y  e.  z )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740
This theorem is referenced by:  cvjust  2149
  Copyright terms: Public domain W3C validator