ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstr3i Unicode version

Theorem eqsstr3i 3058
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1  |-  B  =  A
eqsstr3.2  |-  B  C_  C
Assertion
Ref Expression
eqsstr3i  |-  A  C_  C

Proof of Theorem eqsstr3i
StepHypRef Expression
1 eqsstr3.1 . . 3  |-  B  =  A
21eqcomi 2093 . 2  |-  A  =  B
3 eqsstr3.2 . 2  |-  B  C_  C
42, 3eqsstri 3057 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1290    C_ wss 3000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-in 3006  df-ss 3013
This theorem is referenced by:  inss2  3222  dmv  4665  resasplitss  5203  ofrfval  5878  fnofval  5879  ofrval  5880  off  5882  ofres  5883  ofco  5887  dftpos4  6042  smores2  6073  caseinj  6834  djuinj  6841  bcm1k  10222  bcpasc  10228
  Copyright terms: Public domain W3C validator