ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibcval5 Unicode version

Theorem ibcval5 10232
Description: Write out the top and bottom parts of the binomial coefficient  ( N  _C  K )  =  ( N  x.  ( N  -  1 )  x. 
...  x.  ( ( N  -  K )  +  1 ) )  /  K ! explicitly. In this form, it is valid even for  N  <  K, although it is no longer valid for nonpositive  K. (Contributed by Jim Kingdon, 6-Nov-2021.)
Assertion
Ref Expression
ibcval5  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K
)  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )

Proof of Theorem ibcval5
Dummy variables  x  k  y  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 10219 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
21adantl 272 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
3 simprl 499 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
k  e.  CC )
4 simprr 500 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  x  e.  CC )
53, 4mulcld 7569 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
6 simpr1 950 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
k  e.  CC )
7 simpr2 951 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  ->  x  e.  CC )
8 simpr3 952 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
y  e.  CC )
96, 7, 8mulassd 7572 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
10 simpll 497 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
1110nn0zd 8927 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ZZ )
12 simplr 498 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN )
1312nnzd 8928 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  ZZ )
1411, 13zsubcld 8934 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  ZZ )
1514peano2zd 8932 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  e.  ZZ )
16 1red 7564 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  1  e.  RR )
1712nnred 8496 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  RR )
1810nn0red 8788 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  RR )
1912nnge1d 8526 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  1  <_  K )
2016, 17, 18, 19lesub2dd 8100 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  <_  ( N  -  1 ) )
2114zred 8929 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  RR )
22 leaddsub 7977 . . . . . . . . . . . 12  |-  ( ( ( N  -  K
)  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( ( N  -  K )  +  1 )  <_  N  <->  ( N  -  K )  <_  ( N  -  1 ) ) )
2321, 16, 18, 22syl3anc 1175 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( (
( N  -  K
)  +  1 )  <_  N  <->  ( N  -  K )  <_  ( N  -  1 ) ) )
2420, 23mpbird 166 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  <_  N )
25 eluz2 9086 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  <->  ( ( ( N  -  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( ( N  -  K )  +  1 )  <_  N ) )
2615, 11, 24, 25syl3anbrc 1128 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
2726adantrr 464 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
28 simprr 500 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  NN )
29 nnuz 9115 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
3028, 29syl6eleq 2181 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  ( ZZ>= `  1 )
)
31 vex 2623 . . . . . . . . . 10  |-  k  e. 
_V
32 fvi 5374 . . . . . . . . . 10  |-  ( k  e.  _V  ->  (  _I  `  k )  =  k )
3331, 32ax-mp 7 . . . . . . . . 9  |-  (  _I 
`  k )  =  k
34 eluzelcn 9091 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  CC )
3534adantl 272 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  CC )
3633, 35syl5eqel 2175 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  k  e.  ( ZZ>= `  1 )
)  ->  (  _I  `  k )  e.  CC )
375, 9, 27, 30, 36iseqsplit 9969 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (  seq 1 (  x.  ,  _I  ,  CC ) `  N )  =  ( (  seq 1 (  x.  ,  _I  ,  CC ) `  ( N  -  K ) )  x.  (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ,  CC ) `  N
) ) )
38 elfzuz3 9498 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
3938adantl 272 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ( ZZ>= `  K )
)
40 eluznn 9148 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN )
4112, 39, 40syl2anc 404 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN )
4241adantrr 464 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  NN )
43 facnn 10196 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ,  CC ) `  N
) )
4442, 43syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ,  CC ) `  N
) )
45 facnn 10196 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN  ->  ( ! `  ( N  -  K ) )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  ( N  -  K ) ) )
4628, 45syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  ( N  -  K ) )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  ( N  -  K ) ) )
4746oveq1d 5681 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  =  ( (  seq 1
(  x.  ,  _I  ,  CC ) `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) )
4837, 44, 473eqtr4d 2131 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  N )  =  ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) )
4948expr 368 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  ->  ( ! `  N )  =  ( ( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) ) )
5010faccld 10205 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  NN )
5150nncnd 8497 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  CC )
5251mulid2d 7567 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
5341, 43syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  N )
)
5453oveq2d 5682 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( 1  x.  ( ! `  N ) )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) )
5552, 54eqtr3d 2123 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) )
56 fveq2 5318 . . . . . . . . 9  |-  ( ( N  -  K )  =  0  ->  ( ! `  ( N  -  K ) )  =  ( ! `  0
) )
57 fac0 10197 . . . . . . . . 9  |-  ( ! `
 0 )  =  1
5856, 57syl6eq 2137 . . . . . . . 8  |-  ( ( N  -  K )  =  0  ->  ( ! `  ( N  -  K ) )  =  1 )
59 oveq1 5673 . . . . . . . . . . 11  |-  ( ( N  -  K )  =  0  ->  (
( N  -  K
)  +  1 )  =  ( 0  +  1 ) )
60 0p1e1 8597 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
6159, 60syl6eq 2137 . . . . . . . . . 10  |-  ( ( N  -  K )  =  0  ->  (
( N  -  K
)  +  1 )  =  1 )
62 iseqeq1 9919 . . . . . . . . . 10  |-  ( ( ( N  -  K
)  +  1 )  =  1  ->  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC )  =  seq 1 (  x.  ,  _I  ,  CC ) )
6361, 62syl 14 . . . . . . . . 9  |-  ( ( N  -  K )  =  0  ->  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC )  =  seq 1 (  x.  ,  _I  ,  CC ) )
6463fveq1d 5320 . . . . . . . 8  |-  ( ( N  -  K )  =  0  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  N )
)
6558, 64oveq12d 5684 . . . . . . 7  |-  ( ( N  -  K )  =  0  ->  (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) )
6665eqeq2d 2100 . . . . . 6  |-  ( ( N  -  K )  =  0  ->  (
( ! `  N
)  =  ( ( ! `  ( N  -  K ) )  x.  (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ,  CC ) `  N
) )  <->  ( ! `  N )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) ) )
6755, 66syl5ibrcom 156 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  =  0  ->  ( ! `  N )  =  ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) ) )
68 fznn0sub 9532 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
6968adantl 272 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
70 elnn0 8736 . . . . . 6  |-  ( ( N  -  K )  e.  NN0  <->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
7169, 70sylib 121 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
7249, 67, 71mpjaod 674 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( ( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) )
7372oveq1d 5681 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  =  ( ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
74 vex 2623 . . . . . . 7  |-  f  e. 
_V
75 fvi 5374 . . . . . . 7  |-  ( f  e.  _V  ->  (  _I  `  f )  =  f )
7674, 75ax-mp 7 . . . . . 6  |-  (  _I 
`  f )  =  f
77 eluzelcn 9091 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  f  e.  CC )
7877adantl 272 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  f  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  f  e.  CC )
7976, 78syl5eqel 2175 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  f  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  (  _I  `  f )  e.  CC )
80 mulcl 7530 . . . . . 6  |-  ( ( f  e.  CC  /\  g  e.  CC )  ->  ( f  x.  g
)  e.  CC )
8180adantl 272 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  (
f  e.  CC  /\  g  e.  CC )
)  ->  ( f  x.  g )  e.  CC )
8226, 79, 81iseqcl 9942 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  e.  CC )
8312nnnn0d 8787 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
8483faccld 10205 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
8584nncnd 8497 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  CC )
8669faccld 10205 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
8786nncnd 8497 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  CC )
8884nnap0d 8529 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K ) #  0 )
8986nnap0d 8529 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) ) #  0 )
9082, 85, 87, 88, 89divcanap5d 8345 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )
912, 73, 903eqtrd 2125 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )
92 simplr 498 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  NN )
9392nnnn0d 8787 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  NN0 )
9493faccld 10205 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( ! `  K )  e.  NN )
9594nncnd 8497 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( ! `  K )  e.  CC )
9694nnap0d 8529 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( ! `  K ) #  0 )
9795, 96div0apd 8315 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  /  ( ! `
 K ) )  =  0 )
98 mulcl 7530 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
9998adantl 272 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
100 eluzelcn 9091 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  k  e.  CC )
101100adantl 272 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  k  e.  CC )
10233, 101syl5eqel 2175 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  (  _I  `  k )  e.  CC )
103 cnex 7527 . . . . . 6  |-  CC  e.  _V
104103a1i 9 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  CC  e.  _V )
105 simpr 109 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  k  e.  CC )
106105mul02d 7931 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  (
0  x.  k )  =  0 )
107105mul01d 7932 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  (
k  x.  0 )  =  0 )
108 simpr 109 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  -.  K  e.  ( 0 ... N ) )
109 nn0uz 9114 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
11093, 109syl6eleq 2181 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  ( ZZ>= `  0 )
)
111 simpll 497 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
112111nn0zd 8927 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
113 elfz5 9493 . . . . . . . . . . 11  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
114110, 112, 113syl2anc 404 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
115 nn0re 8743 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
116115ad2antrr 473 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  RR )
117 nnre 8490 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  K  e.  RR )
118117ad2antlr 474 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  RR )
119116, 118subge0d 8073 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  <_  ( N  -  K )  <->  K  <_  N ) )
120114, 119bitr4d 190 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... N )  <->  0  <_  ( N  -  K ) ) )
121108, 120mtbid 633 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  -.  0  <_  ( N  -  K ) )
122 simpl 108 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  N  e.  NN0 )
123122nn0zd 8927 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  N  e.  ZZ )
124 simpr 109 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  K  e.  NN )
125124nnzd 8928 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  K  e.  ZZ )
126123, 125zsubcld 8934 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  -  K
)  e.  ZZ )
127126adantr 271 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  e.  ZZ )
128 0z 8822 . . . . . . . . 9  |-  0  e.  ZZ
129 zltnle 8857 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( N  -  K )  <  0  <->  -.  0  <_  ( N  -  K ) ) )
130127, 128, 129sylancl 405 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  <  0  <->  -.  0  <_  ( N  -  K
) ) )
131121, 130mpbird 166 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  <  0 )
132 zltp1le 8865 . . . . . . . 8  |-  ( ( ( N  -  K
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( N  -  K )  <  0  <->  ( ( N  -  K
)  +  1 )  <_  0 ) )
133127, 128, 132sylancl 405 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  <  0  <->  ( ( N  -  K )  +  1 )  <_ 
0 ) )
134131, 133mpbid 146 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  +  1 )  <_  0 )
135 nn0ge0 8759 . . . . . . 7  |-  ( N  e.  NN0  ->  0  <_  N )
136135ad2antrr 473 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  <_  N )
137 0zd 8823 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
138127peano2zd 8932 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  +  1 )  e.  ZZ )
139 elfz 9491 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  ( ( N  -  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  e.  ( ( ( N  -  K )  +  1 ) ... N )  <-> 
( ( ( N  -  K )  +  1 )  <_  0  /\  0  <_  N ) ) )
140137, 138, 112, 139syl3anc 1175 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  e.  ( ( ( N  -  K
)  +  1 ) ... N )  <->  ( (
( N  -  K
)  +  1 )  <_  0  /\  0  <_  N ) ) )
141134, 136, 140mpbir2and 891 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  e.  ( ( ( N  -  K )  +  1 ) ... N
) )
142 elex 2631 . . . . . 6  |-  ( N  e.  NN0  ->  N  e. 
_V )
143142ad2antrr 473 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  _V )
144 0cn 7541 . . . . . 6  |-  0  e.  CC
145 fvi 5374 . . . . . 6  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
146144, 145mp1i 10 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (  _I  `  0 )  =  0 )
14799, 102, 104, 106, 107, 141, 143, 146iseqz 10004 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  =  0 )
148147oveq1d 5681 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
(  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) )  =  ( 0  /  ( ! `  K )
) )
149 nnz 8830 . . . . 5  |-  ( K  e.  NN  ->  K  e.  ZZ )
150 bcval3 10220 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
151149, 150syl3an2 1209 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  NN  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1521513expa 1144 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
15397, 148, 1523eqtr4rd 2132 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  ( (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ,  CC ) `  N
)  /  ( ! `
 K ) ) )
154 0zd 8823 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  0  e.  ZZ )
155 fzdcel 9515 . . . 4  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  (
0 ... N ) )
156125, 154, 123, 155syl3anc 1175 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  NN )  -> DECID  K  e.  ( 0 ... N ) )
157 exmiddc 783 . . 3  |-  (DECID  K  e.  ( 0 ... N
)  ->  ( K  e.  ( 0 ... N
)  \/  -.  K  e.  ( 0 ... N
) ) )
158156, 157syl 14 . 2  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( K  e.  ( 0 ... N )  \/  -.  K  e.  ( 0 ... N
) ) )
15991, 153, 158mpjaodan 748 1  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K
)  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 665  DECID wdc 781    /\ w3a 925    = wceq 1290    e. wcel 1439   _Vcvv 2620   class class class wbr 3851    _I cid 4124   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410   0cc0 7411   1c1 7412    + caddc 7414    x. cmul 7416    < clt 7583    <_ cle 7584    - cmin 7714    / cdiv 8200   NNcn 8483   NN0cn0 8734   ZZcz 8811   ZZ>=cuz 9080   ...cfz 9485    seqcseq4 9912   !cfa 10194    _C cbc 10216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-fz 9486  df-iseq 9914  df-fac 10195  df-bc 10217
This theorem is referenced by:  bcn2  10233
  Copyright terms: Public domain W3C validator