ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqcl Unicode version

Theorem iseqcl 9756
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 1-Jun-2020.)
Hypotheses
Ref Expression
iseqcl.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqcl.2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqcl.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqcl  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  e.  S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    ph, x, y

Proof of Theorem iseqcl
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqcl.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 8919 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 eqid 2083 . . 3  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  M )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  M )
5 fveq2 5253 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
65eleq1d 2151 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
7 iseqcl.2 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
87ralrimiva 2440 . . . 4  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
9 uzid 8928 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
103, 9syl 14 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
116, 8, 10rspcdva 2717 . . 3  |-  ( ph  ->  ( F `  M
)  e.  S )
12 iseqcl.3 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
137, 12iseqovex 9748 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
14 eqid 2083 . . 3  |- frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
1514, 7, 12iseqval 9749 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  ran frec ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M )
>. ) )
163, 4, 11, 13, 14, 15frecuzrdgtcl 9708 . 2  |-  ( ph  ->  seq M (  .+  ,  F ,  S ) : ( ZZ>= `  M
) --> S )
1716, 1ffvelrnd 5380 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   <.cop 3425    |-> cmpt 3865   ` cfv 4969  (class class class)co 5591    |-> cmpt2 5593  freccfrec 6087   1c1 7254    + caddc 7256   ZZcz 8646   ZZ>=cuz 8914    seqcseq 9740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915  df-iseq 9741
This theorem is referenced by:  iseqp1  9757  iseqoveq  9759  isermono  9772  iseqsplit  9773  iseqcaopr2  9776  iseqid3  9780  iseqhomo  9784  iseqz  9785  iseqdistr  9786  serige0  9789  serile  9790  expivallem  9793  expival  9794  ibcval5  10006  ialgrp1  10808
  Copyright terms: Public domain W3C validator