ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqsst Unicode version

Theorem iseqsst 9947
Description: Specifying a larger universe for  seq. As long as  F and  .+ are closed over  S, then any class which contains  S can be used as the last argument to 
seq.

Together with df-seq3 9915 it can be used to convert between the df-iseq 9914 syntax and the df-seq3 9915 syntax (in many cases iseqseq3 9963 is an even more convenient way to do this).

(Contributed by Jim Kingdon, 28-Apr-2022.)

Hypotheses
Ref Expression
iseqsst.m  |-  ( ph  ->  M  e.  ZZ )
iseqsst.ss  |-  ( ph  ->  S  C_  T )
iseqsst.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqsst.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqsst  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  seq M ( 
.+  ,  F ,  T ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, T, y    ph, x, y

Proof of Theorem iseqsst
Dummy variables  k  w  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2089 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 iseqsst.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 iseqsst.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 iseqsst.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4iseqfcl 9939 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ,  S ) : ( ZZ>= `  M
) --> S )
6 ffn 5174 . . 3  |-  (  seq M (  .+  ,  F ,  S ) : ( ZZ>= `  M
) --> S  ->  seq M (  .+  ,  F ,  S )  Fn  ( ZZ>= `  M )
)
75, 6syl 14 . 2  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  Fn  ( ZZ>= `  M
) )
8 iseqsst.ss . . . 4  |-  ( ph  ->  S  C_  T )
91, 2, 3, 4, 8iseqfclt 9940 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ,  T ) : ( ZZ>= `  M
) --> S )
10 ffn 5174 . . 3  |-  (  seq M (  .+  ,  F ,  T ) : ( ZZ>= `  M
) --> S  ->  seq M (  .+  ,  F ,  T )  Fn  ( ZZ>= `  M )
)
119, 10syl 14 . 2  |-  ( ph  ->  seq M (  .+  ,  F ,  T )  Fn  ( ZZ>= `  M
) )
12 fveq2 5318 . . . . . 6  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 M ) )
13 fveq2 5318 . . . . . 6  |-  ( w  =  M  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 M ) )
1412, 13eqeq12d 2103 . . . . 5  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  M
)  =  (  seq M (  .+  ,  F ,  T ) `  M ) ) )
1514imbi2d 229 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  M )  =  (  seq M (  .+  ,  F ,  T ) `
 M ) ) ) )
16 fveq2 5318 . . . . . 6  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 k ) )
17 fveq2 5318 . . . . . 6  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 k ) )
1816, 17eqeq12d 2103 . . . . 5  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  (  seq M (  .+  ,  F ,  T ) `  k ) ) )
1918imbi2d 229 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  k )  =  (  seq M (  .+  ,  F ,  T ) `
 k ) ) ) )
20 fveq2 5318 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) ) )
21 fveq2 5318 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) )
2220, 21eqeq12d 2103 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `  ( k  +  1 ) ) ) )
2322imbi2d 229 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) ) ) )
24 fveq2 5318 . . . . . 6  |-  ( w  =  n  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 n ) )
25 fveq2 5318 . . . . . 6  |-  ( w  =  n  ->  (  seq M (  .+  ,  F ,  T ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 n ) )
2624, 25eqeq12d 2103 . . . . 5  |-  ( w  =  n  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  (  seq M ( 
.+  ,  F ,  T ) `  w
)  <->  (  seq M
(  .+  ,  F ,  S ) `  n
)  =  (  seq M (  .+  ,  F ,  T ) `  n ) ) )
2726imbi2d 229 . . . 4  |-  ( w  =  n  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  T ) `
 w ) )  <-> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  n )  =  (  seq M (  .+  ,  F ,  T ) `
 n ) ) ) )
282, 3, 4iseq1 9936 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  ( F `
 M ) )
292, 3, 4, 8iseq1t 9937 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  T ) `  M
)  =  ( F `
 M ) )
3028, 29eqtr4d 2124 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  M
)  =  (  seq M (  .+  ,  F ,  T ) `  M ) )
3130a1i 9 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  M
)  =  (  seq M (  .+  ,  F ,  T ) `  M ) ) )
32 oveq1 5673 . . . . . . 7  |-  ( (  seq M (  .+  ,  F ,  S ) `
 k )  =  (  seq M ( 
.+  ,  F ,  T ) `  k
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  .+  ( F `  ( k  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ,  T ) `
 k )  .+  ( F `  ( k  +  1 ) ) ) )
33 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
343adantlr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
354adantlr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
3633, 34, 35iseqp1 9943 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
378adantr 271 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  S  C_  T
)
3833, 34, 35, 37iseqp1t 9944 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  T ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  T ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
3936, 38eqeq12d 2103 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) )  <->  ( (  seq M (  .+  ,  F ,  S ) `  k )  .+  ( F `  ( k  +  1 ) ) )  =  ( (  seq M (  .+  ,  F ,  T ) `
 k )  .+  ( F `  ( k  +  1 ) ) ) ) )
4032, 39syl5ibr 155 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  =  (  seq M (  .+  ,  F ,  T ) `
 k )  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  (  seq M ( 
.+  ,  F ,  T ) `  (
k  +  1 ) ) ) )
4140expcom 115 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F ,  S ) `  k
)  =  (  seq M (  .+  ,  F ,  T ) `  k )  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) ) ) )
4241a2d 26 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  (  seq M (  .+  ,  F ,  T ) `  k ) )  -> 
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  (  seq M (  .+  ,  F ,  T ) `
 ( k  +  1 ) ) ) ) )
4315, 19, 23, 27, 31, 42uzind4 9137 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  n
)  =  (  seq M (  .+  ,  F ,  T ) `  n ) ) )
4443impcom 124 . 2  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ,  S ) `  n )  =  (  seq M (  .+  ,  F ,  T ) `
 n ) )
457, 11, 44eqfnfvd 5414 1  |-  ( ph  ->  seq M (  .+  ,  F ,  S )  =  seq M ( 
.+  ,  F ,  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    C_ wss 3000    Fn wfn 5023   -->wf 5024   ` cfv 5028  (class class class)co 5666   1c1 7412    + caddc 7414   ZZcz 8811   ZZ>=cuz 9080    seqcseq4 9912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-iseq 9914
This theorem is referenced by:  seq3feq  9958  seq3shft2  9960  iseqseq3  9963
  Copyright terms: Public domain W3C validator