ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseradd Unicode version

Theorem iseradd 9995
Description: The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
iseradd.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseradd.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
iseradd.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
iseradd.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  +  ( G `
 k ) ) )
Assertion
Ref Expression
iseradd  |-  ( ph  ->  (  seq M (  +  ,  H ,  CC ) `  N )  =  ( (  seq M (  +  ,  F ,  CC ) `  N )  +  (  seq M (  +  ,  G ,  CC ) `  N )
) )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, H    k, N

Proof of Theorem iseradd
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7528 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 272 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 addcom 7680 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
43adantl 272 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  =  ( y  +  x ) )
5 addass 7533 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
65adantl 272 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
7 iseradd.1 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
8 iseradd.2 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
9 iseradd.3 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
10 iseradd.4 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  +  ( G `
 k ) ) )
11 cnex 7527 . . 3  |-  CC  e.  _V
1211a1i 9 . 2  |-  ( ph  ->  CC  e.  _V )
132, 4, 6, 7, 8, 9, 10, 12iseqcaopr 9973 1  |-  ( ph  ->  (  seq M (  +  ,  H ,  CC ) `  N )  =  ( (  seq M (  +  ,  F ,  CC ) `  N )  +  (  seq M (  +  ,  G ,  CC ) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925    = wceq 1290    e. wcel 1439   _Vcvv 2620   ` cfv 5028  (class class class)co 5666   CCcc 7409    + caddc 7414   ZZ>=cuz 9080    seqcseq4 9912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-fz 9486  df-fzo 9615  df-iseq 9914
This theorem is referenced by:  ser3add  9996  fsumadd  10861
  Copyright terms: Public domain W3C validator