ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumrblem Unicode version

Theorem isumrblem 10765
Description: Lemma for isumrb 10768. (Contributed by Mario Carneiro, 12-Aug-2013.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isummo.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
isumrblem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F ,  CC )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ,  CC ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    F( k)

Proof of Theorem isumrblem
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addid2 7621 . . 3  |-  ( n  e.  CC  ->  (
0  +  n )  =  n )
21adantl 271 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 0  +  n )  =  n )
3 0cnd 7481 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  0  e.  CC )
4 isumrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 270 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 eluzelz 9028 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  ZZ )
8 isummo.dc . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
9 exmiddc 782 . . . . . . . . 9  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
108, 9syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
11 iftrue 3398 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
1211adantl 271 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
13 isummo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1412, 13eqeltrd 2164 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1514ex 113 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
16 iffalse 3401 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
17 0cn 7480 . . . . . . . . . . . 12  |-  0  e.  CC
1816, 17syl6eqel 2178 . . . . . . . . . . 11  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1918a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  A ,  B ,  0 )  e.  CC ) )
2015, 19jaod 672 . . . . . . . . 9  |-  ( ph  ->  ( ( k  e.  A  \/  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC ) )
2120adantr 270 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  A  \/  -.  k  e.  A
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC ) )
2210, 21mpd 13 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
2322ralrimiva 2446 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC )
24 nfv 1466 . . . . . . . . 9  |-  F/ k  N  e.  A
25 nfcsb1v 2963 . . . . . . . . 9  |-  F/_ k [_ N  /  k ]_ B
26 nfcv 2228 . . . . . . . . 9  |-  F/_ k
0
2724, 25, 26nfif 3419 . . . . . . . 8  |-  F/_ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )
2827nfel1 2239 . . . . . . 7  |-  F/ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC
29 eleq1 2150 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  e.  A  <->  N  e.  A ) )
30 csbeq1a 2941 . . . . . . . . 9  |-  ( k  =  N  ->  B  =  [_ N  /  k ]_ B )
3129, 30ifbieq1d 3413 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  e.  A ,  B ,  0 )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 ) )
3231eleq1d 2156 . . . . . . 7  |-  ( k  =  N  ->  ( if ( k  e.  A ,  B ,  0 )  e.  CC  <->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC ) )
3328, 32rspc 2716 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC ) )
344, 23, 33sylc 61 . . . . 5  |-  ( ph  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC )
3534adantr 270 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC )
36 nfcv 2228 . . . . 5  |-  F/_ k N
37 isummo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
3836, 27, 31, 37fvmptf 5395 . . . 4  |-  ( ( N  e.  ZZ  /\  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC )  -> 
( F `  N
)  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 ) )
397, 35, 38syl2anc 403 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 ) )
4039, 35eqeltrd 2164 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
41 elfzelz 9440 . . . 4  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
42 elfzuz 9436 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ( ZZ>= `  M )
)
4342adantl 271 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
4423ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC )
45 nfv 1466 . . . . . . . 8  |-  F/ k  n  e.  A
46 nfcsb1v 2963 . . . . . . . 8  |-  F/_ k [_ n  /  k ]_ B
4745, 46, 26nfif 3419 . . . . . . 7  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
4847nfel1 2239 . . . . . 6  |-  F/ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC
49 eleq1 2150 . . . . . . . 8  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
50 csbeq1a 2941 . . . . . . . 8  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
5149, 50ifbieq1d 3413 . . . . . . 7  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
5251eleq1d 2156 . . . . . 6  |-  ( k  =  n  ->  ( if ( k  e.  A ,  B ,  0 )  e.  CC  <->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC ) )
5348, 52rspc 2716 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC ) )
5443, 44, 53sylc 61 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC )
55 nfcv 2228 . . . . 5  |-  F/_ k
n
5655, 47, 51, 37fvmptf 5395 . . . 4  |-  ( ( n  e.  ZZ  /\  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC )  -> 
( F `  n
)  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
5741, 54, 56syl2an2 561 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
58 uznfz 9517 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  N
)  ->  -.  n  e.  ( M ... ( N  -  1 ) ) )
5958con2i 592 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  N ) )
6059adantl 271 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  N )
)
61 ssel 3019 . . . . . 6  |-  ( A 
C_  ( ZZ>= `  N
)  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6261ad2antlr 473 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6360, 62mtod 624 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
6463iffalsed 3403 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  0 )
6557, 64eqtrd 2120 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  0 )
66 eluzelz 9028 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
67 simpr 108 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
6823ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC )
6967, 68, 53sylc 61 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC )
7066, 69, 56syl2an2 561 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
7170, 69eqeltrd 2164 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  e.  CC )
72 addcl 7467 . . 3  |-  ( ( n  e.  CC  /\  z  e.  CC )  ->  ( n  +  z )  e.  CC )
7372adantl 271 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  ( n  e.  CC  /\  z  e.  CC ) )  -> 
( n  +  z )  e.  CC )
742, 3, 5, 40, 65, 71, 73iseqid 9939 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F ,  CC )  |`  ( ZZ>=
`  N ) )  =  seq N (  +  ,  F ,  CC ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664  DECID wdc 780    = wceq 1289    e. wcel 1438   A.wral 2359   [_csb 2933    C_ wss 2999   ifcif 3393    |-> cmpt 3899    |` cres 4440   ` cfv 5015  (class class class)co 5652   CCcc 7348   0cc0 7350   1c1 7351    + caddc 7353    - cmin 7653   ZZcz 8750   ZZ>=cuz 9019   ...cfz 9424    seqcseq4 9851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-fz 9425  df-fzo 9554  df-iseq 9853
This theorem is referenced by:  isumrb  10768
  Copyright terms: Public domain W3C validator