ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2eq123i Unicode version

Theorem mpt2eq123i 5750
Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpt2eq123i.1  |-  A  =  D
mpt2eq123i.2  |-  B  =  E
mpt2eq123i.3  |-  C  =  F
Assertion
Ref Expression
mpt2eq123i  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )

Proof of Theorem mpt2eq123i
StepHypRef Expression
1 mpt2eq123i.1 . . . 4  |-  A  =  D
21a1i 9 . . 3  |-  ( T. 
->  A  =  D
)
3 mpt2eq123i.2 . . . 4  |-  B  =  E
43a1i 9 . . 3  |-  ( T. 
->  B  =  E
)
5 mpt2eq123i.3 . . . 4  |-  C  =  F
65a1i 9 . . 3  |-  ( T. 
->  C  =  F
)
72, 4, 6mpt2eq123dv 5749 . 2  |-  ( T. 
->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
87mptru 1305 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
Colors of variables: wff set class
Syntax hints:    = wceq 1296   T. wtru 1297    |-> cmpt2 5692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-11 1449  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-oprab 5694  df-mpt2 5695
This theorem is referenced by:  ofmres  5945
  Copyright terms: Public domain W3C validator