ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2eq3dva Unicode version

Theorem mpt2eq3dva 5729
Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.)
Hypothesis
Ref Expression
mpt2eq3dva.1  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  =  D )
Assertion
Ref Expression
mpt2eq3dva  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A , 
y  e.  B  |->  D ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    D( x, y)

Proof of Theorem mpt2eq3dva
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mpt2eq3dva.1 . . . . . 6  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  =  D )
213expb 1145 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  =  D )
32eqeq2d 2100 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( z  =  C  <-> 
z  =  D ) )
43pm5.32da 441 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
54oprabbidv 5719 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) } )
6 df-mpt2 5673 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
7 df-mpt2 5673 . 2  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) }
85, 6, 73eqtr4g 2146 1  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A , 
y  e.  B  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925    = wceq 1290    e. wcel 1439   {coprab 5669    |-> cmpt2 5670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-oprab 5672  df-mpt2 5673
This theorem is referenced by:  mpt2eq3ia  5730  ofeq  5874  fmpt2co  5997  mapxpen  6620  iseqeq2  9922  iseqeq3  9923  iseqval  9934
  Copyright terms: Public domain W3C validator