ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2fun Unicode version

Theorem mpt2fun 5761
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpt2fun.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpt2fun  |-  Fun  F
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem mpt2fun
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2108 . . . . . 6  |-  ( ( z  =  C  /\  w  =  C )  ->  z  =  w )
21ad2ant2l 493 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
32gen2 1385 . . . 4  |-  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w )
4 eqeq1 2095 . . . . . 6  |-  ( z  =  w  ->  (
z  =  C  <->  w  =  C ) )
54anbi2d 453 . . . . 5  |-  ( z  =  w  ->  (
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  w  =  C
) ) )
65mo4 2010 . . . 4  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  A. z A. w ( ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  -> 
z  =  w ) )
73, 6mpbir 145 . . 3  |-  E* z
( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )
87funoprab 5759 . 2  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
9 mpt2fun.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
10 df-mpt2 5671 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
119, 10eqtri 2109 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
1211funeqi 5049 . 2  |-  ( Fun 
F  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
138, 12mpbir 145 1  |-  Fun  F
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1288    = wceq 1290    e. wcel 1439   E*wmo 1950   Fun wfun 5022   {coprab 5667    |-> cmpt2 5668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-fun 5030  df-oprab 5670  df-mpt2 5671
This theorem is referenced by:  elmpt2cl  5856  ofexg  5874  mpt2exxg  5991  mpt2xopn0yelv  6018
  Copyright terms: Public domain W3C validator