ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2mptsx Unicode version

Theorem mpt2mptsx 5902
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
mpt2mptsx  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
Distinct variable groups:    x, y, z, A    y, B, z   
z, C
Allowed substitution hints:    B( x)    C( x, y)

Proof of Theorem mpt2mptsx
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2615 . . . . . 6  |-  u  e. 
_V
2 vex 2615 . . . . . 6  |-  v  e. 
_V
31, 2op1std 5854 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  ( 1st `  z
)  =  u )
43csbeq1d 2925 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
51, 2op2ndd 5855 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( 2nd `  z
)  =  v )
65csbeq1d 2925 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 2nd `  z
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
76csbeq2dv 2942 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
84, 7eqtrd 2115 . . 3  |-  ( z  =  <. u ,  v
>.  ->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
98mpt2mptx 5674 . 2  |-  ( z  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
10 nfcv 2223 . . . 4  |-  F/_ u
( { x }  X.  B )
11 nfcv 2223 . . . . 5  |-  F/_ x { u }
12 nfcsb1v 2949 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
1311, 12nfxp 4427 . . . 4  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
14 sneq 3433 . . . . 5  |-  ( x  =  u  ->  { x }  =  { u } )
15 csbeq1a 2927 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
1614, 15xpeq12d 4426 . . . 4  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
1710, 13, 16cbviun 3741 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
18 mpteq1 3888 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  ->  (
z  e.  U_ x  e.  A  ( {
x }  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )  =  ( z  e.  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C ) )
1917, 18ax-mp 7 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C )  =  ( z  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
20 nfcv 2223 . . 3  |-  F/_ u B
21 nfcv 2223 . . 3  |-  F/_ u C
22 nfcv 2223 . . 3  |-  F/_ v C
23 nfcsb1v 2949 . . 3  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
24 nfcv 2223 . . . 4  |-  F/_ y
u
25 nfcsb1v 2949 . . . 4  |-  F/_ y [_ v  /  y ]_ C
2624, 25nfcsb 2951 . . 3  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
27 csbeq1a 2927 . . . 4  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
28 csbeq1a 2927 . . . 4  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
2927, 28sylan9eqr 2137 . . 3  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
3020, 12, 21, 22, 23, 26, 15, 29cbvmpt2x 5661 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
319, 19, 303eqtr4ri 2114 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
Colors of variables: wff set class
Syntax hints:    = wceq 1285   [_csb 2919   {csn 3422   <.cop 3425   U_ciun 3704    |-> cmpt 3865    X. cxp 4399   ` cfv 4969    |-> cmpt2 5593   1stc1st 5844   2ndc2nd 5845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-sbc 2827  df-csb 2920  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-iota 4934  df-fun 4971  df-fv 4977  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847
This theorem is referenced by:  mpt2mpts  5903  mpt2fvex  5908
  Copyright terms: Public domain W3C validator