ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2xopovel Unicode version

Theorem mpt2xopovel 6020
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpt2xopovel  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y    x, N, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)    N( n)

Proof of Theorem mpt2xopovel
StepHypRef Expression
1 mpt2xopoveq.f . . . 4  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21mpt2xopn0yelv 6018 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
32pm4.71rd 387 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) ) ) )
41mpt2xopoveq 6019 . . . . . 6  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
54eleq2d 2158 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph } ) )
6 nfcv 2229 . . . . . . 7  |-  F/_ n V
76elrabsf 2878 . . . . . 6  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
8 sbccom 2915 . . . . . . . 8  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph )
9 sbccom 2915 . . . . . . . . 9  |-  ( [. N  /  n ]. [. K  /  y ]. ph  <->  [. K  / 
y ]. [. N  /  n ]. ph )
109sbcbii 2899 . . . . . . . 8  |-  ( [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
118, 10bitri 183 . . . . . . 7  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
1211anbi2i 446 . . . . . 6  |-  ( ( N  e.  V  /\  [. N  /  n ]. [.
<. V ,  W >.  /  x ]. [. K  /  y ]. ph )  <->  ( N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
)
137, 12bitri 183 . . . . 5  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) )
145, 13syl6bb 195 . . . 4  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
1514pm5.32da 441 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) ) )
16 3anass 929 . . 3  |-  ( ( K  e.  V  /\  N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )  <->  ( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
1715, 16syl6bbr 197 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
183, 17bitrd 187 1  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    = wceq 1290    e. wcel 1439   {crab 2364   _Vcvv 2620   [.wsbc 2841   <.cop 3453   ` cfv 5028  (class class class)co 5666    |-> cmpt2 5668   1stc1st 5923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator